Switch to: References

Add citations

You must login to add citations.
  1. Enumerations in computable structure theory.Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller & Reed Solomon - 2005 - Annals of Pure and Applied Logic 136 (3):219-246.
    We exploit properties of certain directed graphs, obtained from the families of sets with special effective enumeration properties, to generalize several results in computable model theory to higher levels of the hyperarithmetical hierarchy. Families of sets with such enumeration features were previously built by Selivanov, Goncharov, and Wehner. For a computable successor ordinal α, we transform a countable directed graph into a structure such that has a isomorphic copy if and only if has a computable isomorphic copy.A computable structure is (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Intrinsic bounds on complexity and definability at limit levels.John Chisholm, Ekaterina B. Fokina, Sergey S. Goncharov, Valentina S. Harizanov, Julia F. Knight & Sara Quinn - 2009 - Journal of Symbolic Logic 74 (3):1047-1060.
    We show that for every computable limit ordinal α, there is a computable structure A that is $\Delta _\alpha ^0 $ categorical, but not relatively $\Delta _\alpha ^0 $ categorical (equivalently. it does not have a formally $\Sigma _\alpha ^0 $ Scott family). We also show that for every computable limit ordinal a, there is a computable structure A with an additional relation R that is intrinsically $\Sigma _\alpha ^0 $ on A. but not relatively intrinsically $\Sigma _\alpha ^0 $ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (15 other versions)2000 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium 2000.Carol Wood - 2001 - Bulletin of Symbolic Logic 7 (1):82-163.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the complexity of the theory of a computably presented metric structure.Caleb Camrud, Isaac Goldbring & Timothy H. McNicholl - 2023 - Archive for Mathematical Logic 62 (7):1111-1129.
    We consider the complexity (in terms of the arithmetical hierarchy) of the various quantifier levels of the diagram of a computably presented metric structure. As the truth value of a sentence of continuous logic may be any real in [0, 1], we introduce two kinds of diagrams at each level: the closed diagram, which encapsulates weak inequalities of the form $$\phi ^\mathcal {M}\le r$$, and the open diagram, which encapsulates strict inequalities of the form $$\phi ^\mathcal {M}< r$$. We show (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An introduction to the Scott complexity of countable structures and a survey of recent results.Matthew Harrison-Trainor - 2022 - Bulletin of Symbolic Logic 28 (1):71-103.
    Every countable structure has a sentence of the infinitary logic $\mathcal {L}_{\omega _1 \omega }$ which characterizes that structure up to isomorphism among countable structures. Such a sentence is called a Scott sentence, and can be thought of as a description of the structure. The least complexity of a Scott sentence for a structure can be thought of as a measurement of the complexity of describing the structure. We begin with an introduction to the area, with short and simple proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A computably stable structure with no Scott family of finitary formulas.Peter Cholak, Richard A. Shore & Reed Solomon - 2006 - Archive for Mathematical Logic 45 (5):519-538.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computability-theoretic complexity of countable structures.Valentina S. Harizanov - 2002 - Bulletin of Symbolic Logic 8 (4):457-477.
    Computable model theory, also called effective or recursive model theory, studies algorithmic properties of mathematical structures, their relations, and isomorphisms. These properties can be described syntactically or semantically. One of the major tasks of computable model theory is to obtain, whenever possible, computability-theoretic versions of various classical model-theoretic notions and results. For example, in the 1950's, Fröhlich and Shepherdson realized that the concept of a computable function can make van der Waerden's intuitive notion of an explicit field precise. This led (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computable dimension for ordered fields.Oscar Levin - 2016 - Archive for Mathematical Logic 55 (3-4):519-534.
    The computable dimension of a structure counts the number of computable copies up to computable isomorphism. In this paper, we consider the possible computable dimensions for various classes of computable ordered fields. We show that computable ordered fields with finite transcendence degree are computably stable, and thus have computable dimension 1. We then build computable ordered fields of infinite transcendence degree which have infinite computable dimension, but also such fields which are computably categorical. Finally, we show that 1 is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • 2006 Summer Meeting of the Association for Symbolic Logic Logic Colloquium '06: Nijmegen, The Netherlands July 27-August 2, 2006. [REVIEW]Helmut Schwichtenberg - 2007 - Bulletin of Symbolic Logic 13 (2):251-298.
    Download  
     
    Export citation  
     
    Bookmark  
  • Effective categoricity of Abelian p -groups.Wesley Calvert, Douglas Cenzer, Valentina S. Harizanov & Andrei Morozov - 2009 - Annals of Pure and Applied Logic 159 (1-2):187-197.
    We investigate effective categoricity of computable Abelian p-groups . We prove that all computably categorical Abelian p-groups are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. We investigate which computable Abelian p-groups are categorical and relatively categorical.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Computable structures of rank.J. F. Knight & J. Millar - 2010 - Journal of Mathematical Logic 10 (1):31-43.
    For countable structure, "Scott rank" provides a measure of internal, model-theoretic complexity. For a computable structure, the Scott rank is at most [Formula: see text]. There are familiar examples of computable structures of various computable ranks, and there is an old example of rank [Formula: see text]. In the present paper, we show that there is a computable structure of Scott rank [Formula: see text]. We give two different constructions. The first starts with an arithmetical example due to Makkai, and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Computability-theoretic categoricity and Scott families.Ekaterina Fokina, Valentina Harizanov & Daniel Turetsky - 2019 - Annals of Pure and Applied Logic 170 (6):699-717.
    Download  
     
    Export citation  
     
    Bookmark  
  • 2011 North American Annual Meeting of the Association for Symbolic Logic.Itay Neeman - 2012 - Bulletin of Symbolic Logic 18 (2):275-305.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Structural Complexity of Models of Arithmetic.Antonio Montalbán & Dino Rossegger - forthcoming - Journal of Symbolic Logic:1-17.
    We calculate the possible Scott ranks of countable models of Peano arithmetic. We show that no non-standard model can have Scott rank less than $\omega $ and that non-standard models of true arithmetic must have Scott rank greater than $\omega $. Other than that there are no restrictions. By giving a reduction via $\Delta ^{\mathrm {in}}_{1}$ bi-interpretability from the class of linear orderings to the canonical structural $\omega $ -jump of models of an arbitrary completion T of $\mathrm {PA}$ we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Lopez-Escobar Theorem for Continuous Domains.Nikolay Bazhenov, Ekaterina Fokina, Dino Rossegger, Alexandra Soskova & Stefan Vatev - forthcoming - Journal of Symbolic Logic:1-18.
    We prove an effective version of the Lopez-Escobar theorem for continuous domains. Let $Mod(\tau )$ be the set of countable structures with universe $\omega $ in vocabulary $\tau $ topologized by the Scott topology. We show that an invariant set $X\subseteq Mod(\tau )$ is $\Pi ^0_\alpha $ in the Borel hierarchy of this topology if and only if it is definable by a $\Pi ^p_\alpha $ -formula, a positive $\Pi ^0_\alpha $ formula in the infinitary logic $L_{\omega _1\omega }$. As (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • There is no classification of the decidably presentable structures.Matthew Harrison-Trainor - 2018 - Journal of Mathematical Logic 18 (2):1850010.
    A computable structure [Formula: see text] is decidable if, given a formula [Formula: see text] of elementary first-order logic, and a tuple [Formula: see text], we have a decision procedure to decide whether [Formula: see text] holds of [Formula: see text]. We show that there is no reasonable classification of the decidably presentable structures. Formally, we show that the index set of the computable structures with decidable presentations is [Formula: see text]-complete. We also show that for each [Formula: see text] (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)< i> Δ_< sub> 2< sup> 0-categoricity in Boolean algebras and linear orderings.Charles F. D. McCoy - 2003 - Annals of Pure and Applied Logic 119 (1-3):85-120.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Effective categoricity of equivalence structures.Wesley Calvert, Douglas Cenzer, Valentina Harizanov & Andrei Morozov - 2006 - Annals of Pure and Applied Logic 141 (1):61-78.
    We investigate effective categoricity of computable equivalence structures . We show that is computably categorical if and only if has only finitely many finite equivalence classes, or has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. Since all computable equivalence structures are relatively categorical, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Δ20-categoricity in Boolean algebras and linear orderings.Charles F. D. McCoy - 2003 - Annals of Pure and Applied Logic 119 (1-3):85-120.
    We characterize Δ20-categoricity in Boolean algebras and linear orderings under some extra effectiveness conditions. We begin with a study of the relativized notion in these structures.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On bi-embeddable categoricity of algebraic structures.Nikolay Bazhenov, Dino Rossegger & Maxim Zubkov - 2022 - Annals of Pure and Applied Logic 173 (3):103060.
    Download  
     
    Export citation  
     
    Bookmark