Switch to: References

Citations of:

Methodology and metaphysics in the development of Dedekind's theory of ideals

In José Ferreirós Domínguez & Jeremy Gray (eds.), The Architecture of Modern Mathematics: Essays in History and Philosophy. Oxford, England: Oxford University Press (2006)

Add citations

You must login to add citations.
  1. Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conceptual and Computational Mathematics†.Nicolas Fillion - 2019 - Philosophia Mathematica 27 (2):199-218.
    ABSTRACT This paper examines consequences of the computer revolution in mathematics. By comparing its repercussions with those of conceptual developments that unfolded in the nineteenth century, I argue that the key epistemological lesson to draw from the two transformative periods is that effective and successful mathematical practices in science result from integrating the computational and conceptual styles of mathematics, and not that one of the two styles of mathematical reasoning is superior. Finally, I show that the methodology deployed by applied (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Idealization in Cassirer's philosophy of mathematics.Thomas Mormann - 2008 - Philosophia Mathematica 16 (2):151 - 181.
    The notion of idealization has received considerable attention in contemporary philosophy of science but less in philosophy of mathematics. An exception was the ‘critical idealism’ of the neo-Kantian philosopher Ernst Cassirer. According to Cassirer the methodology of idealization plays a central role for mathematics and empirical science. In this paper it is argued that Cassirer's contributions in this area still deserve to be taken into account in the current debates in philosophy of mathematics. For extremely useful criticisms on earlier versions (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Introduction to Special Issue: Dedekind and the Philosophy of Mathematics.Erich Reck - 2017 - Philosophia Mathematica 25 (3):287-291.
    © The Author [2017]. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected] Dedekind was a contemporary of Bernhard Riemann, Georg Cantor, and Gottlob Frege, among others. Together, they revolutionized mathematics and logic in the second half of the nineteenth century. Dedekind had an especially strong influence on David Hilbert, Ernst Zermelo, Emmy Noether, and Nicolas Bourbaki, who completed that revolution in the twentieth century. With respect to mainstream mathematics, he is best known for his contributions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dedekind and Hilbert on the foundations of the deductive sciences.Ansten Klev - 2011 - Review of Symbolic Logic 4 (4):645-681.
    We offer an interpretation of the words and works of Richard Dedekind and the David Hilbert of around 1900 on which they are held to entertain diverging views on the structure of a deductive science. Firstly, it is argued that Dedekind sees the beginnings of a science in concepts, whereas Hilbert sees such beginnings in axioms. Secondly, it is argued that for Dedekind, the primitive terms of a science are substantive terms whose sense is to be conveyed by elucidation, whereas (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mathematical existence.Penelope Maddy - 2005 - Bulletin of Symbolic Logic 11 (3):351-376.
    Despite some discomfort with this grandly philosophical topic, I do in fact hope to address a venerable pair of philosophical chestnuts: mathematical truth and existence. My plan is to set out three possible stands on these issues, for an exercise in compare and contrast.' A word of warning, though, to philosophical purists (and perhaps of comfort to more mathematical readers): I will explore these philosophical positions with an eye to their interconnections with some concrete issues of set theoretic method.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Space of valuations.Thierry Coquand - 2009 - Annals of Pure and Applied Logic 157 (2-3):97-109.
    The general framework of this paper is a reformulation of Hilbert’s program using the theory of locales, also known as formal or point-free topology [P.T. Johnstone, Stone Spaces, in: Cambridge Studies in Advanced Mathematics, vol. 3, 1982; Th. Coquand, G. Sambin, J. Smith, S. Valentini, Inductively generated formal topologies, Ann. Pure Appl. Logic 124 71–106; G. Sambin, Intuitionistic formal spaces–a first communication, in: D. Skordev , Mathematical Logic and its Applications, Plenum, New York, 1987, pp. 187–204]. Formal topology presents a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the creative role of axiomatics. The discovery of lattices by Schröder, Dedekind, Birkhoff, and others.Dirk Schlimm - 2011 - Synthese 183 (1):47-68.
    Three different ways in which systems of axioms can contribute to the discovery of new notions are presented and they are illustrated by the various ways in which lattices have been introduced in mathematics by Schröder et al. These historical episodes reveal that the axiomatic method is not only a way of systematizing our knowledge, but that it can also be used as a fruitful tool for discovering and introducing new mathematical notions. Looked at it from this perspective, the creative (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations