Switch to: Citations

Add references

You must login to add references.
  1. Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08.John Corcoran - 1972 - Philosophy of Science 39 (1):106-108.
    Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08. -/- Constance Reid was an insider of the Berkeley-Stanford logic circle. Her San Francisco home was in Ashbury Heights near the homes of logicians such as Dana Scott and John Corcoran. Her sister Julia Robinson was one of the top mathematical logicians of her generation, as was Julia’s husband Raphael Robinson for whom Robinson Arithmetic was named. Julia was a Tarski PhD and, in recognition of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)A Decision Method for Elementary Algebra and Geometry.Alfred Tarski - 1952 - Journal of Symbolic Logic 17 (3):207-207.
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Truth in a Structure.Wilfrid Hodges - 1986 - Proceedings of the Aristotelian Society 86:135 - 151.
    Wilfrid Hodges; VIII*—Truth in a Structure, Proceedings of the Aristotelian Society, Volume 86, Issue 1, 1 June 1986, Pages 135–152, https://doi.org/10.1093/ari.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Completeness and Categoricity, Part II: Twentieth-Century Metalogic to Twenty-first-Century Semantics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (2):77-94.
    This paper is the second in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Completeness and categoricity: Frege, gödel and model theory.Stephen Read - 1997 - History and Philosophy of Logic 18 (2):79-93.
    Frege’s project has been characterized as an attempt to formulate a complete system of logic adequate to characterize mathematical theories such as arithmetic and set theory. As such, it was seen to fail by Gödel’s incompleteness theorem of 1931. It is argued, however, that this is to impose a later interpretation on the word ‘complete’ it is clear from Dedekind’s writings that at least as good as interpretation of completeness is categoricity. Whereas few interesting first-order mathematical theories are categorical or (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Beyond first-order logic: the historical interplay between mathematical logic and axiomatic set theory.Gregory H. Moore - 1980 - History and Philosophy of Logic 1 (1-2):95-137.
    What has been the historical relationship between set theory and logic? On the one hand, Zermelo and other mathematicians developed set theory as a Hilbert-style axiomatic system. On the other hand, set theory influenced logic by suggesting to Schröder, Löwenheim and others the use of infinitely long expressions. The questions of which logic was appropriate for set theory - first-order logic, second-order logic, or an infinitary logic - culminated in a vigorous exchange between Zermelo and Gödel around 1930.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • REVIEW OF Alfred Tarski, Collected Papers, vols. 1-4 (1986) edited by Steven Givant and Ralph McKenzie. [REVIEW]John Corcoran - 1991 - MATHEMATICAL REVIEWS 91 (h):01101-4.
    Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in volume, but most of the Aristotelian corpus is not about logic, whereas (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Categoricity.John Corcoran - 1980 - History and Philosophy of Logic 1 (1):187-207.
    After a short preface, the first of the three sections of this paper is devoted to historical and philosophic aspects of categoricity. The second section is a self-contained exposition, including detailed definitions, of a proof that every mathematical system whose domain is the closure of its set of distinguished individuals under its distinguished functions is categorically characterized by its induction principle together with its true atoms (atomic sentences and negations of atomic sentences). The third section deals with applications especially those (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Completeness before Post: Bernays, Hilbert, and the development of propositional logic.Richard Zach - 1999 - Bulletin of Symbolic Logic 5 (3):331-366.
    Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917-1923. The aim of this paper is to describe these results, focussing (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Hilbert's Programs: 1917–1922.Wilfried Sieg - 1999 - Bulletin of Symbolic Logic 5 (1):1-44.
    Hilbert's finitist program was not created at the beginning of the twenties solely to counteract Brouwer's intuitionism, but rather emerged out of broad philosophical reflections on the foundations of mathematics and out of detailed logical work; that is evident from notes of lecture courses that were given by Hilbert and prepared in collaboration with Bernays during the period from 1917 to 1922. These notes reveal a dialectic progression from a critical logicism through a radical constructivism toward finitism; the progression has (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • String theory.John Corcoran, William Frank & Michael Maloney - 1974 - Journal of Symbolic Logic 39 (4):625-637.
    For each positive n , two alternative axiomatizations of the theory of strings over n alphabetic characters are presented. One class of axiomatizations derives from Tarski's system of the Wahrheitsbegriff and uses the n characters and concatenation as primitives. The other class involves using n character-prefixing operators as primitives and derives from Hermes' Semiotik. All underlying logics are second order. It is shown that, for each n, the two theories are definitionally equivalent [or synonymous in the sense of deBouvere]. It (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)ssays on the Theory of Numbers. [REVIEW]R. Dedekind - 1903 - Ancient Philosophy (Misc) 13:314.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Grundzüge der theoretischen Logik.D. Hilbert & W. Ackermann - 1928 - Annalen der Philosophie Und Philosophischen Kritik 7:157-157.
    Download  
     
    Export citation  
     
    Bookmark   211 citations  
  • Frege and Hilbert on Consistency.Patricia A. Blanchette - 1996 - Journal of Philosophy 93 (7):317-336.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Carnap, completeness, and categoricity:The gabelbarkeitssatz OF 1928. [REVIEW]S. Awodey & A. W. Carus - 2001 - Erkenntnis 54 (2):145-172.
    In 1929 Carnap gave a paper in Prague on Investigations in General Axiomatics; a briefsummary was published soon after. Its subject lookssomething like early model theory, and the mainresult, called the Gabelbarkeitssatz, appears toclaim that a consistent set of axioms is complete justif it is categorical. This of course casts doubt onthe entire project. Though there is no furthermention of this theorem in Carnap''s publishedwritings, his Nachlass includes a largetypescript on the subject, Investigations inGeneral Axiomatics. We examine this work here,showing (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • (1 other version)Completeness in the theory of types.Leon Henkin - 1950 - Journal of Symbolic Logic 15 (2):81-91.
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • (2 other versions)Principia mathematica.A. N. Whitehead & B. Russell - 1910-1913 - Revue de Métaphysique et de Morale 19 (2):19-19.
    Download  
     
    Export citation  
     
    Bookmark   238 citations  
  • From categoricity to completeness.J. Corcoran - 1981 - History and Philosophy of Logic 2:113.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Dedekind's structuralism: An interpretation and partial defense.Erich H. Reck - 2003 - Synthese 137 (3):369 - 419.
    Various contributors to recent philosophy of mathematics havetaken Richard Dedekind to be the founder of structuralismin mathematics. In this paper I examine whether Dedekind did, in fact, hold structuralist views and, insofar as that is the case, how they relate to the main contemporary variants. In addition, I argue that his writings contain philosophical insights that are worth reexamining and reviving. The discussion focusses on Dedekind''s classic essay Was sind und was sollen die Zahlen?, supplemented by evidence from Stetigkeit und (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Husserl and Hilbert on completeness.Ulrich Majer - 1997 - Synthese 110 (1):37-56.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Carnap's work in the foundations of logic and mathematics in a historical perspective.Jaakko Hintikka - 1992 - Synthese 93 (1-2):167 - 189.
    Carnap's philosophy is examined from new viewpoints, including three important distinctions: (i) language as calculus vs language as universal medium; (ii) different senses of completeness: (iii) standard vs nonstandard interpretations of (higher-order) logic. (i) Carnap favored in 1930-34 the "formal mode of speech," a corollary to the universality assumption. He later gave it up partially but retained some of its ingredients, e.g., the one-domain assumption. (ii) Carnap's project of creating a universal self-referential language is encouraged by (ii) and by the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • From completeness to archimedean completenes.Philip Ehrlich - 1997 - Synthese 110 (1):57-76.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Logic in the twenties: The nature of the quantifier.Warren D. Goldfarb - 1979 - Journal of Symbolic Logic 44 (3):351-368.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • (1 other version)A formulation of the simple theory of types.Alonzo Church - 1940 - Journal of Symbolic Logic 5 (2):56-68.
    Download  
     
    Export citation  
     
    Bookmark   227 citations  
  • Foundations of Set Theory.A. A. Fraenkel, Y. Bar Hillel & A. Levy - 1975 - British Journal for the Philosophy of Science 26 (2):165-170.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Über Extremalaxiome.Rudolf Carnap & Friedrich Bachmann - 1936 - Erkenntnis 6 (1):166-188.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Tarski, Alfred.”.John Corcoran - 1995 - In Robert Audi (ed.), The Cambridge Dictionary of Philosophy. New York City: Cambridge University Press.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Who were the American Postulate Theorists?Michael Scanlan - 1991 - Journal of Symbolic Logic 56 (3):981-1002.
    Articles by two American mathematicians, E. V. Huntington and Oswald Veblen, are discussed as examples of a movement in foundational research in the period 1900-1930 called American postulate theory. This movement also included E. H. Moore, R. L. Moore, C. H. Langford, H. M. Sheffer, C. J. Keyser, and others. The articles discussed exemplify American postulate theorists' standards for axiomatizations of mathematical theories, and their investigations of such axiomatizations with respect to metatheoretic properties such as independence, completeness, and consistency.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Husserl's two notions of completeness.Jairo josé Da Silva - 2000 - Synthese 125 (3):417 - 438.
    In this paper I discuss Husserl's solution of the problem of imaginary elements in mathematics as presented in the drafts for two lectures hegave in Göttingen in 1901 and other related texts of the same period,a problem that had occupied Husserl since the beginning of 1890, whenhe was planning a never published sequel to Philosophie der Arithmetik(1891). In order to solve the problem of imaginary entities Husserl introduced,independently of Hilbert, two notions of completeness (definiteness in Husserl'sterminology) for a formal axiomatic (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Continuum and Other Types of Serial Order.Edward V. Huntington - 1918 - Journal of Philosophy, Psychology and Scientific Methods 15 (3):78-80.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (3 other versions)Einleitung in die Mengenlehre.A. Fraenkel - 1928 - Revue de Métaphysique et de Morale 35 (1):12-13.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • On extremal axioms.Rudolf Carnap, Friedrich Bachmann & H. G. Bohnert - 1981 - History and Philosophy of Logic 2 (1-2):67-85.
    In the paper translated here, Carnap and Bachmann shows that the apparently metalinguistic ?extremal' axioms that are added to some axiom systems to the effect that the foregoing axioms are to apply as broadly, or as narrowly, as possible may be formulated directly as proper axioms. They analyze such axioms into four fundamental types, with the help of a concept of ?complete? isomorphism.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Die alte und die neue logik.Rudolf Carnap - 1930 - Erkenntnis 1 (1):12-26.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)Alfred Tarski's elimination theory for real closed fields.Lou Van Den Dries - 1988 - Journal of Symbolic Logic 53 (1):7-19.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Book Review:Hilbert Constance Reid. [REVIEW]John Corcoran - 1972 - Philosophy of Science 39 (1):106-.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Alfred Tarski's Elimination Theory for Real Closed Fields.Lou van Den Dries - 1988 - Journal of Symbolic Logic 53 (1):7 - 19.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bericht über untersuchungen zur allgemeinen axiomatik.Rudolf Carnap - 1930 - Erkenntnis 1 (1):303-307.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (3 other versions)Einleitung in die Mengenlehre.A. Fränkel - 1926 - Revue Philosophique de la France Et de l'Etranger 102:310-311.
    Download  
     
    Export citation  
     
    Bookmark   6 citations