Switch to: References

Citations of:

Category Theory

Oxford, England: Oxford University Press (2006)

Add citations

You must login to add citations.
  1. The logic of partitions: Introduction to the dual of the logic of subsets: The logic of partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen as the logic of subsets of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)The Quantum Logic of Direct-Sum Decompositions: The Dual to the Quantum Logic of Subspaces.David Ellerman - 2017
    Since the pioneering work of Birkhoff and von Neumann, quantum logic has been interpreted as the logic of (closed) subspaces of a Hilbert space. There is a progression from the usual Boolean logic of subsets to the "quantum logic" of subspaces of a general vector space--which is then specialized to the closed subspaces of a Hilbert space. But there is a "dual" progression. The notion of a partition (or quotient set or equivalence relation) is dual (in a category-theoretic sense) to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mac Lane, Bourbaki, and Adjoints: A Heteromorphic Retrospective.David Ellerman - manuscript
    Saunders Mac Lane famously remarked that "Bourbaki just missed" formulating adjoints in a 1948 appendix (written no doubt by Pierre Samuel) to an early draft of Algebre--which then had to wait until Daniel Kan's 1958 paper on adjoint functors. But Mac Lane was using the orthodox treatment of adjoints that only contemplates the object-to-object morphisms within a category, i.e., homomorphisms. When Samuel's treatment is reconsidered in view of the treatment of adjoints using heteromorphisms or hets (object-to-object morphisms between objects in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Adjoint and Brain Functors.David Ellerman - 2016 - Axiomathes 26 (1):41-61.
    There is some consensus among orthodox category theorists that the concept of adjoint functors is the most important concept contributed to mathematics by category theory. We give a heterodox treatment of adjoints using heteromorphisms that parses an adjunction into two separate parts. Then these separate parts can be recombined in a new way to define a cognate concept, the brain functor, to abstractly model the functions of perception and action of a brain. The treatment uses relatively simple category theory and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On classical finite probability theory as a quantum probability calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The point is not to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Concrete Universals: A Modern Treatment using Category Theory.David Ellerman - 2014 - AL-Mukhatabat.
    Today it would be considered "bad Platonic metaphysics" to think that among all the concrete instances of a property there could be a universal instance so that all instances had the property by virtue of participating in that concrete universal. Yet there is a mathematical theory, category theory, dating from the mid-20th century that shows how to precisely model concrete universals within the "Platonic Heaven" of mathematics. This paper, written for the philosophical logician, develops this category-theoretic treatment of concrete universals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Introduction to Partition Logic.David Ellerman - 2014 - Logic Journal of the IGPL 22 (1):94-125.
    Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the idea arises of a dual (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Composable Relations Induced in Networks of Aligned Ontologies: A Category Theoretic Approach.Seremeti Lambrini & Kameas Achilles - 2015 - Axiomathes 25 (3):285-311.
    A network of aligned ontologies is a distributed system, whose components are interacting and interoperating, the result of this interaction being, either the extension of local assertions, which are valid within each individual ontology, to global assertions holding between remote ontology syntactic entities through a network path, or to local assertions holding between local entities of an ontology, but induced by remote ontologies, through a cycle in the network. The mechanism for achieving this interaction is the composition of relations. In (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Categorial Semantic Representation of Quantum Event Structures.Elias Zafiris & Vassilios Karakostas - 2013 - Foundations of Physics 43 (9):1090-1123.
    The overwhelming majority of the attempts in exploring the problems related to quantum logical structures and their interpretation have been based on an underlying set-theoretic syntactic language. We propose a transition in the involved syntactic language to tackle these problems from the set-theoretic to the category-theoretic mode, together with a study of the consequent semantic transition in the logical interpretation of quantum event structures. In the present work, this is realized by representing categorically the global structure of a quantum algebra (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Adjoints and emergence: Applications of a new theory of adjoint functors. [REVIEW]David Ellerman - 2007 - Axiomathes 17 (1):19-39.
    Since its formal definition over sixty years ago, category theory has been increasingly recognized as having a foundational role in mathematics. It provides the conceptual lens to isolate and characterize the structures with importance and universality in mathematics. The notion of an adjunction (a pair of adjoint functors) has moved to center-stage as the principal lens. The central feature of an adjunction is what might be called “determination through universals” based on universal mapping properties. A recently developed “heteromorphic” theory about (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The iterative conception of function and the iterative conception of set.Tim Button - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    Hilary Putnam once suggested that “the actual existence of sets as ‘intangible objects’ suffers… from a generalization of a problem first pointed out by Paul Benacerraf… are sets a kind of function or are functions a sort of set?” Sadly, he did not elaborate; my aim, here, is to do so on his behalf. There are well-known methods for treating sets as functions and functions as sets. But these do not raise any obvious philosophical or foundational puzzles. For that, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theory and Reality : Metaphysics as Second Science.Staffan Angere - unknown
    Theory and Reality is about the connection between true theories and the world. A mathematical framefork for such connections is given, and it is shown how that framework can be used to infer facts about the structure of reality from facts about the structure of true theories, The book starts with an overview of various approaches to metaphysics. Beginning with Quine's programmatic "On what there is", the first chapter then discusses the perils involved in going from language to metaphysics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Category-Theoretic Structure and Radical Ontic Structural Realism.Jonathan Bain - 2013 - Synthese 190 (9):1621-1635.
    Radical Ontic Structural Realism (ROSR) claims that structure exists independently of objects that may instantiate it. Critics of ROSR contend that this claim is conceptually incoherent, insofar as, (i) it entails there can be relations without relata, and (ii) there is a conceptual dependence between relations and relata. In this essay I suggest that (ii) is motivated by a set-theoretic formulation of structure, and that adopting a category-theoretic formulation may provide ROSR with more support. In particular, I consider how a (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Duality for the Logic of Quantum Actions.Jort M. Bergfeld, Kohei Kishida, Joshua Sack & Shengyang Zhong - 2015 - Studia Logica 103 (4):781-805.
    In this paper we show a duality between two approaches to represent quantum structures abstractly and to model the logic and dynamics therein. One approach puts forward a “quantum dynamic frame” :2267–2282, 2005), a labelled transition system whose transition relations are intended to represent projections and unitaries on a Hilbert space. The other approach considers a “Piron lattice”, which characterizes the algebra of closed linear subspaces of a Hilbert space. We define categories of these two sorts of structures and show (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Involutive Categories and Monoids, with a GNS-Correspondence.Bart Jacobs - 2012 - Foundations of Physics 42 (7):874-895.
    This paper develops the basics of the theory of involutive categories and shows that such categories provide the natural setting in which to describe involutive monoids. It is shown how categories of Eilenberg-Moore algebras of involutive monads are involutive, with conjugation for modules and vector spaces as special case. A part of the so-called Gelfand–Naimark–Segal (GNS) construction is identified as an isomorphism of categories, relating states on involutive monoids and inner products. This correspondence exists in arbritrary involutive symmetric monoidal categories.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On three arguments against categorical structuralism.Makmiller Pedroso - 2009 - Synthese 170 (1):21 - 31.
    Some mathematicians and philosophers contend that set theory plays a foundational role in mathematics. However, the development of category theory during the second half of the twentieth century has encouraged the view that this theory can provide a structuralist alternative to set-theoretical foundations. Against this tendency, criticisms have been made that category theory depends on set-theoretical notions and, because of this, category theory fails to show that set-theoretical foundations are dispensable. The goal of this paper is to show that these (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Book reviews. [REVIEW]John Symons - 2008 - Studia Logica 89 (2):285-289.
    Download  
     
    Export citation  
     
    Bookmark  
  • Contextual semantics in quantum mechanics from a categorical point of view.Vassilios Karakostas & Elias Zafiris - 2017 - Synthese 194 (3).
    The category-theoretic representation of quantum event structures provides a canonical setting for confronting the fundamental problem of truth valuation in quantum mechanics as exemplified, in particular, by Kochen–Specker’s theorem. In the present study, this is realized on the basis of the existence of a categorical adjunction between the category of sheaves of variable local Boolean frames, constituting a topos, and the category of quantum event algebras. We show explicitly that the latter category is equipped with an object of truth values, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Applying weak equivalence of categories between partial map and pointed set against changing the condition of 2‐arms bandit problem.Takayuki Niizato & Yukio-Pegio Gunji - 2011 - Complexity 16 (4):10-21.
    Download  
     
    Export citation  
     
    Bookmark  
  • Internal Diagrams and Archetypal Reasoning in Category Theory.Eduardo Ochs - 2013 - Logica Universalis 7 (3):291-321.
    We can regard operations that discard information, like specializing to a particular case or dropping the intermediate steps of a proof, as projections, and operations that reconstruct information as liftings. By working with several projections in parallel we can make sense of statements like “Set is the archetypal Cartesian Closed Category”, which means that proofs about CCCs can be done in the “archetypal language” and then lifted to proofs in the general setting. The method works even when our archetypal language (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Problem of Relation without Relata.Aboutorab Yaghmaie - 2021 - Journal of Philosophical Investigations at University of Tabriz 14 (33):404-425.
    The claim that there can be relations without relata, submitted by the radical ontic structural realist, mounts a serious challenge to her: on the one hand, the world is constituted, according to this sort of realism, just by structures and relations, and on the other hand, relations depend, mathematics says, on individual objects as relata. To resolve the problem, Steven French has argued that while the dependency of relations on relata is conceivable concerning the structure associated with the source of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation