Switch to: References

Citations of:

Is there a problem of induction for mathematics?

In Mary Leng, Alexander Paseau & Michael D. Potter (eds.), Mathematical Knowledge. Oxford, England: Oxford University Press. pp. 57-71 (2007)

Add citations

You must login to add citations.
  1. Why Is Proof the Only Way to Acquire Mathematical Knowledge?Marc Lange - 2024 - Australasian Journal of Philosophy 102 (2):333-353.
    This paper proposes an account of why proof is the only way to acquire knowledge of some mathematical proposition’s truth. Admittedly, non-deductive arguments for mathematical propositions can be strong and play important roles in mathematics. But this paper proposes a necessary condition for knowledge that can be satisfied by putative proofs (and proof sketches), as well as by non-deductive arguments in science, but not by non-deductive arguments from mathematical evidence. The necessary condition concerns whether we can justly expect that if (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Confirming Mathematical Conjectures by Analogy.Francesco Nappo, Nicolò Cangiotti & Caterina Sisti - 2024 - Erkenntnis 89 (6):2493-2519.
    Analogy has received attention as a form of inductive reasoning in the empirical sciences. Its role in mathematics has, instead, received less consideration. This paper provides a novel account of how an analogy with a more familiar mathematical domain can contribute to the confirmation of a mathematical conjecture. By reference to case-studies, we propose a distinction between an _incremental_ and a _non-incremental_ form of confirmation by mathematical analogy. We offer an account of the former within the popular framework of Bayesian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cosmic Skepticism and the Beginning of Physical Reality (Doctoral Dissertation).Linford Dan - 2022 - Dissertation, Purdue University
    This dissertation is concerned with two of the largest questions that we can ask about the nature of physical reality: first, whether physical reality begin to exist and, second, what criteria would physical reality have to fulfill in order to have had a beginning? Philosophers of religion and theologians have previously addressed whether physical reality began to exist in the context of defending the Kal{\'a}m Cosmological Argument (KCA) for theism, that is, (P1) everything that begins to exist has a cause (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dialetheism and Modus Tollens.Ben Blumson & Theresa Helke - 2021 - The Reasoner 15 (4):30.
    Suppose that some contradictions are true – for example, that as I walk through the door, I’m inside and I’m not inside. Then we argue 'if I'm walking through the door, I'm inside; I'm not inside; therefore, I'm not walking through the door' is an invalid instance of modus tollens.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Can Armstrongian Universals Do for Induction?William Peden - 2020 - Philosophia 49 (3):1145-1161.
    David Armstrong argues that necessitation relations among universals are the best explanation of some of our observations. If we consequently accept them into our ontologies, then we can justify induction, because these necessitation relations also have implications for the unobserved. By embracing Armstrongian universals, we can vindicate some of our strongest epistemological intuitions and answer the Problem of Induction. However, Armstrong’s reasoning has recently been challenged on a variety of grounds. Critics argue against both Armstrong’s usage of inference to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Chance and the Continuum Hypothesis.Daniel Hoek - 2020 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Evidence, Proofs, and Derivations.Andrew Aberdein - 2019 - ZDM 51 (5):825-834.
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • O Problema da Indução.Eduardo Castro & Diogo Fernandes - 2014 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    State of the art paper on the problem of induction: how to justify the conclusion that ‘all Fs are Gs’ from the premise that ‘all observed Fs are Gs’. The most prominent theories of contemporary philosophical literature are discussed and analysed, such as: inductivism, reliabilism, perspective of laws of nature, rationalism, falsificationism, the material theory of induction and probabilistic approaches, according to Carnap, Reichenbach and Bayesianism. In the end, we discuss the new problem of induction of Goodman, raised by the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Non-deductive logic in mathematics.James Franklin - 1987 - British Journal for the Philosophy of Science 38 (1):1-18.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as Fermat's Last Theorem and the Riemann Hypothesis, have had to be considered in terms of the evidence for and against them. It is argued here that it is not adequate to describe the relation of evidence to hypothesis as `subjective', `heuristic' or (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The negative theology of absolute infinity: Cantor, mathematics, and humility.Rico Gutschmidt & Merlin Carl - 2024 - International Journal for Philosophy of Religion 95 (3):233-256.
    Cantor argued that absolute infinity is beyond mathematical comprehension. His arguments imply that the domain of mathematics cannot be grasped by mathematical means. We argue that this inability constitutes a foundational problem. For Cantor, however, the domain of mathematics does not belong to mathematics, but to theology. We thus discuss the theological significance of Cantor’s treatment of absolute infinity and show that it can be interpreted in terms of negative theology. Proceeding from this interpretation, we refer to the recent debate (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Arithmetic, enumerative induction and size bias.A. C. Paseau - 2021 - Synthese 199 (3-4):9161-9184.
    Number theory abounds with conjectures asserting that every natural number has some arithmetic property. An example is Goldbach’s Conjecture, which states that every even number greater than 2 is the sum of two primes. Enumerative inductive evidence for such conjectures usually consists of small cases. In the absence of supporting reasons, mathematicians mistrust such evidence for arithmetical generalisations, more so than most other forms of non-deductive evidence. Some philosophers have also expressed scepticism about the value of enumerative inductive evidence in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Non-deductive justification in mathematics.A. C. Paseau - 2023 - Handbook of the History and Philosophy of Mathematical Practice.
    In mathematics, the deductive method reigns. Without proof, a claim remains unsolved, a mere conjecture, not something that can be simply assumed; when a proof is found, the problem is solved, it turns into a “result,” something that can be relied on. So mathematicians think. But is there more to mathematical justification than proof? -/- The answer is an emphatic yes, as I explain in this article. I argue that non-deductive justification is in fact pervasive in mathematics, and that it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inference to the best explanation as supporting the expansion of mathematicians’ ontological commitments.Marc Lange - 2022 - Synthese 200 (2):1-26.
    This paper argues that in mathematical practice, conjectures are sometimes confirmed by “Inference to the Best Explanation” as applied to some mathematical evidence. IBE operates in mathematics in the same way as IBE in science. When applied to empirical evidence, IBE sometimes helps to justify the expansion of scientists’ ontological commitments. Analogously, when applied to mathematical evidence, IBE sometimes helps to justify mathematicians' in expanding the range of their ontological commitments. IBE supplements other forms of non-deductive reasoning in mathematics, avoiding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Non-deductive methods in mathematics.Alan Baker - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations