Switch to: References

Add citations

You must login to add citations.
  1. A Stochastic Model of Mathematics and Science.David H. Wolpert & David B. Kinney - 2024 - Foundations of Physics 54 (2):1-67.
    We introduce a framework that can be used to model both mathematics and human reasoning about mathematics. This framework involves stochastic mathematical systems (SMSs), which are stochastic processes that generate pairs of questions and associated answers (with no explicit referents). We use the SMS framework to define normative conditions for mathematical reasoning, by defining a “calibration” relation between a pair of SMSs. The first SMS is the human reasoner, and the second is an “oracle” SMS that can be interpreted as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Aristotelian Realist Philosophy of Mathematics: Mathematics as the science of quantity and structure.James Franklin - 2014 - London and New York: Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts of the physical world and (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Topical Themes in Argumentation Theory: Twenty Exploratory Studies.Frans Hendrik van Eemeren & Bart Garssen (eds.) - 2012 - Dordrecht, Netherland: Springer.
    Topical Themes in Argumentation Theory brings together twenty exploratory studies on important subjects of research in contemporary argumentation theory. The essays are based on papers that were presented at the 7th Conference of the International Society for the Study of Argumentation in Amsterdam in June 2010. They give an impression of the nature and the variety of the kind of research that has recently been carried out in the study of argumentation. The volume starts with three essays that provide stimulating (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • New Tools for Theory Choice and Theory Diagosis.John R. Welch - 2013 - Studies in History and Philosophy of Science Part A 44 (3):318-329.
    Theory choice can be approached in at least four ways. One of these calls for the application of decision theory, and this article endorses this approach. But applying standard forms of decision theory imposes an overly demanding standard of numeric information, supposedly satisfied by point-valued utility and probability functions. To ameliorate this difficulty, a version of decision theory that requires merely comparative utilities and plausibilities is proposed. After a brief summary of this alternative, the article illustrates how comparative decision theory (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-Formal Properties of Real Mathematical Proofs.Jean Paul Van Bendegem - 1988 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1988 (1):249-254.
    Suppose you attend a seminar where a mathematician presents a proof to some of his colleagues. Suppose further that what he is proving is an important mathematical statement Now the following happens: as the mathematician proceeds, his audience is amazed at first, then becomes angry and finally ends up disturbing the lecture (some walk out, some laugh, …). If in addition, you see that the proof he is presenting is formally speaking (nearly) correct, would you say you are witnessing an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Can Armstrongian Universals Do for Induction?William Peden - 2020 - Philosophia 49 (3):1145-1161.
    David Armstrong argues that necessitation relations among universals are the best explanation of some of our observations. If we consequently accept them into our ontologies, then we can justify induction, because these necessitation relations also have implications for the unobserved. By embracing Armstrongian universals, we can vindicate some of our strongest epistemological intuitions and answer the Problem of Induction. However, Armstrong’s reasoning has recently been challenged on a variety of grounds. Critics argue against both Armstrong’s usage of inference to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Knowledge of Mathematics without Proof.Alexander Paseau - 2015 - British Journal for the Philosophy of Science 66 (4):775-799.
    Mathematicians do not claim to know a proposition unless they think they possess a proof of it. For all their confidence in the truth of a proposition with weighty non-deductive support, they maintain that, strictly speaking, the proposition remains unknown until such time as someone has proved it. This article challenges this conception of knowledge, which is quasi-universal within mathematics. We present four arguments to the effect that non-deductive evidence can yield knowledge of a mathematical proposition. We also show that (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Arithmetic, enumerative induction and size bias.A. C. Paseau - 2021 - Synthese 199 (3-4):9161-9184.
    Number theory abounds with conjectures asserting that every natural number has some arithmetic property. An example is Goldbach’s Conjecture, which states that every even number greater than 2 is the sum of two primes. Enumerative inductive evidence for such conjectures usually consists of small cases. In the absence of supporting reasons, mathematicians mistrust such evidence for arithmetical generalisations, more so than most other forms of non-deductive evidence. Some philosophers have also expressed scepticism about the value of enumerative inductive evidence in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Statistical Data and Mathematical Propositions.Cory Juhl - 2015 - Pacific Philosophical Quarterly 96 (1):100-115.
    Statistical tests of the primality of some numbers look similar to statistical tests of many nonmathematical, clearly empirical propositions. Yet interpretations of probability prima facie appear to preclude the possibility of statistical tests of mathematical propositions. For example, it is hard to understand how the statement that n is prime could have a frequentist probability other than 0 or 1. On the other hand, subjectivist approaches appear to be saddled with ‘coherence’ constraints on rational probabilities that require rational agents to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Chance and the Continuum Hypothesis.Daniel Hoek - 2021 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The formal sciences discover the philosophers' stone.James Franklin - 1994 - Studies in History and Philosophy of Science Part A 25 (4):513-533.
    The formal sciences - mathematical as opposed to natural sciences, such as operations research, statistics, theoretical computer science, systems engineering - appear to have achieved mathematically provable knowledge directly about the real world. It is argued that this appearance is correct.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Resurrecting logical probability.James Franklin - 2001 - Erkenntnis 55 (2):277-305.
    The logical interpretation of probability, or "objective Bayesianism'' – the theory that (some) probabilities are strictly logical degrees of partial implication – is defended. The main argument against it is that it requires the assignment of prior probabilities, and that any attempt to determine them by symmetry via a "principle of insufficient reason" inevitably leads to paradox. Three replies are advanced: that priors are imprecise or of little weight, so that disagreement about them does not matter, within limits; that it (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Mathematics, The Computer Revolution and the Real World.James Franklin - 1988 - Philosophica 42:79-92.
    The philosophy of mathematics has largely abandoned foundational studies, but is still fixated on theorem proving, logic and number theory, and on whether mathematical knowledge is certain. That is not what mathematics looks like to, say, a knot theorist or an industrial mathematical modeller. The "computer revolution" shows that mathematics is a much more direct study of the world, especially its structural aspects.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Arguments Whose Strength Depends on Continuous Variation.James Franklin - 2013 - Informal Logic 33 (1):33-56.
    Both the traditional Aristotelian and modern symbolic approaches to logic have seen logic in terms of discrete symbol processing. Yet there are several kinds of argument whose validity depends on some topological notion of continuous variation, which is not well captured by discrete symbols. Examples include extrapolation and slippery slope arguments, sorites, fuzzy logic, and those involving closeness of possible worlds. It is argued that the natural first attempts to analyze these notions and explain their relation to reasoning fail, so (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Towards a theory of mathematical argument.Ian J. Dove - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), Foundations of Science. Springer. pp. 291--308.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Towards a theory of mathematical argument.Ian J. Dove - 2009 - Foundations of Science 14 (1-2):136-152.
    In this paper, I assume, perhaps controversially, that translation into a language of formal logic is not the method by which mathematicians assess mathematical reasoning. Instead, I argue that the actual practice of analyzing, evaluating and critiquing mathematical reasoning resembles, and perhaps equates with, the practice of informal logic or argumentation theory. It doesn’t matter whether the reasoning is a full-fledged mathematical proof or merely some non-deductive mathematical justification: in either case, the methodology of assessment overlaps to a large extent (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Experimental Mathematics.Alan Baker - 2008 - Erkenntnis 68 (3):331-344.
    The rise of the field of “ experimental mathematics” poses an apparent challenge to traditional philosophical accounts of mathematics as an a priori, non-empirical endeavor. This paper surveys different attempts to characterize experimental mathematics. One suggestion is that experimental mathematics makes essential use of electronic computers. A second suggestion is that experimental mathematics involves support being gathered for an hypothesis which is inductive rather than deductive. Each of these options turns out to be inadequate, and instead a third suggestion is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Bayesian perspectives on mathematical practice.James Franklin - 2020 - Handbook of the History and Philosophy of Mathematical Practice.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Moral Strata: Another Approach to Reflective Equilibrium.John R. Welch - 2014 - Cham: Springer.
    This volume recreates the received notion of reflective equilibrium. It reconfigures reflective equilibrium as both a cognitive ideal and a method for approximating this ideal. The ideal of reflective equilibrium is restructured using the concept of discursive strata, which are formed by sentences and differentiated by function. Sentences that perform the same kind of linguistic function constitute a stratum. The book shows how moral discourse can be analyzed into phenomenal, instrumental, and teleological strata, and the ideal of reflective equilibrium reworked (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Corrupting the youth: a history of philosophy in Australia.James Franklin - 2003 - Sydney, Australia: Macleay Press.
    A polemical account of Australian philosophy up to 2003, emphasising its unique aspects (such as commitment to realism) and the connections between philosophers' views and their lives. Topics include early idealism, the dominance of John Anderson in Sydney, the Orr case, Catholic scholasticism, Melbourne Wittgensteinianism, philosophy of science, the Sydney disturbances of the 1970s, Francofeminism, environmental philosophy, the philosophy of law and Mabo, ethics and Peter Singer. Realist theories especially praised are David Armstrong's on universals, David Stove's on logical probability (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Non-deductive methods in mathematics.Alan Baker - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Philosophy, mathematics and structure.James Franklin - 1995 - Philosopher: revue pour tous 1 (2):31-38.
    An early version of the work on mathematics as the science of structure that appeared later as An Aristotelian Realist Philosophy of Mathematics (2014).
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotelian realism.James Franklin - 2009 - In A. Irvine (ed.), The Philosophy of Mathematics (Handbook of the Philosophy of Science series). North-Holland Elsevier.
    Aristotelian, or non-Platonist, realism holds that mathematics is a science of the real world, just as much as biology or sociology are. Where biology studies living things and sociology studies human social relations, mathematics studies the quantitative or structural aspects of things, such as ratios, or patterns, or complexity, or numerosity, or symmetry. Let us start with an example, as Aristotelians always prefer, an example that introduces the essential themes of the Aristotelian view of mathematics. A typical mathematical truth is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Evidence, Proofs, and Derivations.Andrew Aberdein - 2019 - ZDM 51 (5):825-834.
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Are Aesthetic Judgements Purely Aesthetic? Testing the Social Conformity Account.Matthew Inglis & Andrew Aberdein - 2020 - ZDM 52 (6):1127-1136.
    Many of the methods commonly used to research mathematical practice, such as analyses of historical episodes or individual cases, are particularly well-suited to generating causal hypotheses, but less well-suited to testing causal hypotheses. In this paper we reflect on the contribution that the so-called hypothetico-deductive method, with a particular focus on experimental studies, can make to our understanding of mathematical practice. By way of illustration, we report an experiment that investigated how mathematicians attribute aesthetic properties to mathematical proofs. We demonstrate (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Wabi-Sabi Mathematics.Jean-Francois Maheux - unknown
    Mathematics and aesthetics have a long history in common. In this relation however, the aesthetic dimension of mathematics largely refers to concepts such as purity, absoluteness, symmetry, and so on. In stark contrast to such a nexus of ideas, the Japanese aesthetic of wabi-sabi values imperfections, temporality, incompleteness, earthly crudeness, and even contradiction. In this paper, I discuss the possibilities of “wabi-sabi mathematics” by showing how wabi-sabi mathematics is conceivable; how wabi-sabi mathematics is observable; and why we should bother about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The objective Bayesian conceptualisation of proof and reference class problems.James Franklin - 2011 - Sydney Law Review 33 (3):545-561.
    The objective Bayesian view of proof (or logical probability, or evidential support) is explained and defended: that the relation of evidence to hypothesis (in legal trials, science etc) is a strictly logical one, comparable to deductive logic. This view is distinguished from the thesis, which had some popularity in law in the 1980s, that legal evidence ought to be evaluated using numerical probabilities and formulas. While numbers are not always useful, a central role is played in uncertain reasoning by the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations