Switch to: References

Add citations

You must login to add citations.
  1. The preferred-basis problem and the quantum mechanics of everything.Jeffrey A. Barrett - 2005 - British Journal for the Philosophy of Science 56 (2):199-220.
    argued that there are two options for what he called a realistic solution to the quantum measurement problem: (1) select a preferred set of observables for which definite values are assumed to exist, or (2) attempt to assign definite values to all observables simultaneously (1810–1). While conventional wisdom has it that the second option is ruled out by the Kochen-Specker theorem, Vink nevertheless advocated it. Making every physical quantity determinate in quantum mechanics carries with it significant conceptual costs, but it (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Entanglement and disentanglement in relativistic quantum mechanics.Jeffrey A. Barrett - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (2):168-174.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Fulling Non‐uniqueness and the Unruh Effect: A Primer on Some Aspects of Quantum Field Theory.Aristidis Arageorgis, John Earman & Laura Ruetsche - 2003 - Philosophy of Science 70 (1):164-202.
    We discuss the intertwined topics of Fulling non‐uniqueness and the Unruh effect. The Fulling quantization, which is in some sense the natural one for an observer uniformly accelerated through Minkowski spacetime to adopt, is often heralded as a quantization of the Klein‐Gordon field which is both physically relevant and unitarily inequivalent to the standard Minkowski quantization. We argue that the Fulling and Minkowski quantizations do not constitute a satisfactory example of physically relevant, unitarily inequivalent quantizations, and indicate what it would (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The Ontology of Electromagnetism.Lars-Göran Johansson - 2017 - Studia Philosophica Estonica 10 (1):25-44.
    Electromagnetism is usually understood as a theory describing how charged particles and eletromagnetic fields interact. In this paper I argue that a double ontology comprising both particles and fields is problematic. Either we should think of electromagnetism as a theory about charged particles directly interacting with each other, or as theory of fields whose local interactions are manifested as field quanta, called "particles." From a purely theoretical point of view the choice between a particle and a field interpretation does not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Proposal for a Bohmian Ontology of Quantum Gravity.Antonio Vassallo & Michael Esfeld - 2013 - Foundations of Physics (1):1-18.
    The paper shows how the Bohmian approach to quantum physics can be applied to develop a clear and coherent ontology of non-perturbative quantum gravity. We suggest retaining discrete objects as the primitive ontology also when it comes to a quantum theory of space-time and therefore focus on loop quantum gravity. We conceive atoms of space, represented in terms of nodes linked by edges in a graph, as the primitive ontology of the theory and show how a non-local law in which (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The fundamentality of fields.Charles T. Sebens - 2022 - Synthese 200 (5):1-28.
    There is debate as to whether quantum field theory is, at bottom, a quantum theory of fields or particles. One can take a field approach to the theory, using wave functionals over field configurations, or a particle approach, using wave functions over particle configurations. This article argues for a field approach, presenting three advantages over a particle approach: particle wave functions are not available for photons, a classical field model of the electron gives a superior account of both spin and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • No-Go Theorems and the Foundations of Quantum Physics.Andrea Oldofredi - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):355-370.
    In the history of quantum physics several no-go theorems have been proved, and many of them have played a central role in the development of the theory, such as Bell’s or the Kochen–Specker theorem. A recent paper by F. Laudisa has raised reasonable doubts concerning the strategy followed in proving some of these results, since they rely on the standard framework of quantum mechanics, a theory that presents several ontological problems. The aim of this paper is twofold: on the one (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Entanglement Structure of Quantum Field Systems.Vincent Lam - 2013 - International Studies in the Philosophy of Science 27 (1):59 - 72.
    This article discusses the peculiar features of quantum entanglement and quantum non-locality within the algebraic approach to relativistic quantum field theory (RQFT). The debate on the ontology of RQFT is considered in the light of these well-known but little discussed features. In particular, this article examines the ontic structural realist understanding of quantum entanglement and quantum non-locality and its contribution to this debate.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • No place for particles in relativistic quantum theories?Hans Halvorson & Rob Clifton - 2002 - Philosophy of Science 69 (1):1-28.
    David Malament (1996) has recently argued that there can be no relativistic quantum theory of (localizable) particles. We consider and rebut several objections that have been made against the soundness of Malament’s argument. We then consider some further objections that might be made against the generality of Malament’s conclusion, and we supply three no‐go theorems to counter these objections. Finally, we dispel potential worries about the counterintuitive nature of these results by showing that relativistic quantum field theory itself explains the (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Locality, localization, and the particle concept: Topics in the foundations of quantum field theory.Hans Halvorson - 2001 - Dissertation, University of Pittsburgh
    This dissertation reconsiders some traditional issues in the foundations of quantum mechanics in the context of relativistic quantum field theory (RQFT); and it considers some novel foundational issues that arise first in the context of RQFT. The first part of the dissertation considers quantum nonlocality in RQFT. Here I show that the generic state of RQFT displays Bell correlations relative to measurements performed in any pair of spacelike separated regions, no matter how distant. I also show that local systems in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation