Switch to: References

Add citations

You must login to add citations.
  1. Consistency results about ordinal definability.Kenneth McAloon - 1971 - Annals of Mathematical Logic 2 (4):449.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Generic degrees are complemented.Masahiro Kumabe - 1993 - Annals of Pure and Applied Logic 59 (3):257-272.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Undefinability of truth and nonstandard models.Roman Kossak - 2004 - Annals of Pure and Applied Logic 126 (1-3):115-123.
    We discuss Robinson's model theoretic proof of Tarski's theorem on undefinability of truth. We present two other “diagonal-free” proofs of Tarski's theorem, and we compare undefinability of truth to other forms of undefinability in nonstandard models of arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Higher kurtz randomness.Bjørn Kjos-Hanssen, André Nies, Frank Stephan & Liang Yu - 2010 - Annals of Pure and Applied Logic 161 (10):1280-1290.
    A real x is -Kurtz random if it is in no closed null set . We show that there is a cone of -Kurtz random hyperdegrees. We characterize lowness for -Kurtz randomness as being -dominated and -semi-traceable.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Measure and category in effective descriptive set theory.Alexander S. Kechris - 1973 - Annals of Mathematical Logic 5 (4):337.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Levy and set theory.Akihiro Kanamori - 2006 - Annals of Pure and Applied Logic 140 (1):233-252.
    Azriel Levy did fundamental work in set theory when it was transmuting into a modern, sophisticated field of mathematics, a formative period of over a decade straddling Cohen’s 1963 founding of forcing. The terms “Levy collapse”, “Levy hierarchy”, and “Levy absoluteness” will live on in set theory, and his technique of relative constructibility and connections established between forcing and definability will continue to be basic to the subject. What follows is a detailed account and analysis of Levy’s work and contributions (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Enumeration reducibility and partial degrees.John Case - 1971 - Annals of Mathematical Logic 2 (4):419-439.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • An interpretation of intuitionistic analysis.D. van Dalen - 1978 - Annals of Mathematical Logic 13 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Models of set theory containing many perfect sets.John Truss - 1974 - Annals of Mathematical Logic 7 (2):197.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Symmetric submodels of a cohen generic extension.Claude Sureson - 1992 - Annals of Pure and Applied Logic 58 (3):247-261.
    Sureson, C., Symmetric submodels of a Cohen generic extension, Annals of Pure and Applied Logic 58 247–261. We study some symmetric submodels of a Cohen generic extension and the satisfaction of several properties ) which strongly violate the axiom of choice.
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing with tagged trees.John R. Steel - 1978 - Annals of Mathematical Logic 15 (1):55.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Implicit Definability in Arithmetic.Stephen G. Simpson - 2016 - Notre Dame Journal of Formal Logic 57 (3):329-339.
    We consider implicit definability over the natural number system $\mathbb{N},+,\times,=$. We present a new proof of two theorems of Leo Harrington. The first theorem says that there exist implicitly definable subsets of $\mathbb{N}$ which are not explicitly definable from each other. The second theorem says that there exists a subset of $\mathbb{N}$ which is not implicitly definable but belongs to a countable, explicitly definable set of subsets of $\mathbb{N}$. Previous proofs of these theorems have used finite- or infinite-injury priority constructions. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the elimination of imaginaries from certain valued fields.Philip Scowcroft & Angus Macintyre - 1993 - Annals of Pure and Applied Logic 61 (3):241-276.
    A nontrivial ring with unit eliminates imaginaries just in case its complete theory has the following property: every definable m-ary equivalence relation E may be defined by a formula f = f, where f is an m-ary definable function. We show that for certain natural expansions of the field of p-adic numbers, elimination of imaginaries fails or is independent of ZPC. Similar results hold for certain fields of formal power series.
    Download  
     
    Export citation  
     
    Bookmark   2 citations