Switch to: References

Add citations

You must login to add citations.
  1. 1-genericity in the enumeration degrees.Kate Copestake - 1988 - Journal of Symbolic Logic 53 (3):878-887.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Goodness in the enumeration and singleton degrees.Charles M. Harris - 2010 - Archive for Mathematical Logic 49 (6):673-691.
    We investigate and extend the notion of a good approximation with respect to the enumeration ${({\mathcal D}_{\rm e})}$ and singleton ${({\mathcal D}_{\rm s})}$ degrees. We refine two results by Griffith, on the inversion of the jump of sets with a good approximation, and we consider the relation between the double jump and index sets, in the context of enumeration reducibility. We study partial order embeddings ${\iota_s}$ and ${\hat{\iota}_s}$ of, respectively, ${{\mathcal D}_{\rm e}}$ and ${{\mathcal D}_{\rm T}}$ (the Turing degrees) into (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Interpreting true arithmetic in the Δ 0 2 -enumeration degrees.Thomas F. Kent - 2010 - Journal of Symbolic Logic 75 (2):522-550.
    We show that there is a first order sentence φ(x; a, b, l) such that for every computable partial order.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reducibilities in two models for combinatory logic.Luis E. Sanchis - 1979 - Journal of Symbolic Logic 44 (2):221-234.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Π₃-Theory of the [image] -Enumeration Degrees Is Undecidable.Thomas F. Kent - 2006 - Journal of Symbolic Logic 71 (4):1284 - 1302.
    We show that in the language of {≤}, the Π₃-fragment of the first order theory of the $\Sigma _{2}^{0}$-enumeration degrees is undecidable. We then extend this result to show that the Π₃-theory of any substructure of the enumeration degrees which contains the $\Delta _{2}^{0}$-degrees is undecidable.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • C-Quasi-Minimal enumeration degrees below c'.Boris Solon - 2006 - Archive for Mathematical Logic 45 (4):505-517.
    This paper is dedicated to the study of properties of the operations ∪ and ∩ in the upper semilattice of the e-degrees as well as in the interval (c,c') e for any e-degree c.
    Download  
     
    Export citation  
     
    Bookmark  
  • Strong Enumeration Reducibilities.Roland Sh Omanadze & Andrea Sorbi - 2006 - Archive for Mathematical Logic 45 (7):869-912.
    We investigate strong versions of enumeration reducibility, the most important one being s-reducibility. We prove that every countable distributive lattice is embeddable into the local structure $L(\mathfrak D_s)$ of the s-degrees. However, $L(\mathfrak D_s)$ is not distributive. We show that on $\Delta^{0}_{2}$ sets s-reducibility coincides with its finite branch version; the same holds of e-reducibility. We prove some density results for $L(\mathfrak D_s)$ . In particular $L(\mathfrak D_s)$ is upwards dense. Among the results about reducibilities that are stronger than s-reducibility, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On minimal pairs of enumeration degrees.Kevin McEvoy & S. Barry Cooper - 1985 - Journal of Symbolic Logic 50 (4):983-1001.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Relatively computably enumerable reals.Bernard A. Anderson - 2011 - Archive for Mathematical Logic 50 (3-4):361-365.
    A real X is defined to be relatively c.e. if there is a real Y such that X is c.e.(Y) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \not\leq_T Y}$$\end{document}. A real X is relatively simple and above if there is a real Y (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degrees of unsolvability complementary between recursively enumerable degrees, Part I.S. B. Cooper - 1972 - Annals of Mathematical Logic 4 (1):31.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Cupping and noncupping in the enumeration degrees of∑< sub> 2< sup> 0 sets.S. Barry Cooper, Andrea Sorbi & Xiaoding Yi - 1996 - Annals of Pure and Applied Logic 82 (3):317-342.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Density of the cototal enumeration degrees.Joseph S. Miller & Mariya I. Soskova - 2018 - Annals of Pure and Applied Logic 169 (5):450-462.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Cupping and noncupping in the enumeration degrees of ∑20 sets.S. Barry Cooper, Andrea Sorbi & Xiaoding Yi - 1996 - Annals of Pure and Applied Logic 82 (3):317-342.
    We prove the following three theorems on the enumeration degrees of ∑20 sets. Theorem A: There exists a nonzero noncuppable ∑20 enumeration degree. Theorem B: Every nonzero Δ20enumeration degree is cuppable to 0′e by an incomplete total enumeration degree. Theorem C: There exists a nonzero low Δ20 enumeration degree with the anticupping property.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Jumps of quasi-minimal enumeration degrees.Kevin McEvoy - 1985 - Journal of Symbolic Logic 50 (3):839-848.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Partial degrees and the density problem.S. B. Cooper - 1982 - Journal of Symbolic Logic 47 (4):854-859.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On some filters and ideals of the Medvedev lattice.Andrea Sorbi - 1990 - Archive for Mathematical Logic 30 (1):29-48.
    Let $\mathfrak{M}$ be the Medvedev lattice: this paper investigates some filters and ideals (most of them already introduced by Dyment, [4]) of $\mathfrak{M}$ . If $\mathfrak{G}$ is any of the filters or ideals considered, the questions concerning $\mathfrak{G}$ which we try to answer are: (1) is $\mathfrak{G}$ prime? What is the cardinality of ${\mathfrak{M} \mathord{\left/ {\vphantom {\mathfrak{M} \mathfrak{G}}} \right. \kern-0em} \mathfrak{G}}$ ? Occasionally, we point out some general facts on theT-degrees or the partial degrees, by which these questions can be (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A survey of partial degrees.Leonard P. Sasso - 1975 - Journal of Symbolic Logic 40 (2):130-140.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Noncappable enumeration degrees below 0'e. [REVIEW]S. Barry Cooper & Andrea Sorbi - 1996 - Journal of Symbolic Logic 61 (4):1347 - 1363.
    We prove that there exists a noncappable enumeration degree strictly below 0' e.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A note on the enumeration degrees of 1-generic sets.Liliana Badillo, Caterina Bianchini, Hristo Ganchev, Thomas F. Kent & Andrea Sorbi - 2016 - Archive for Mathematical Logic 55 (3):405-414.
    We show that every nonzero $${\Delta^{0}_{2}}$$ enumeration degree bounds the enumeration degree of a 1-generic set. We also point out that the enumeration degrees of 1-generic sets, below the first jump, are not downwards closed, thus answering a question of Cooper.
    Download  
     
    Export citation  
     
    Bookmark   1 citation