Switch to: References

Add citations

You must login to add citations.
  1. Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Representational Foundations of Computation.Michael Rescorla - 2015 - Philosophia Mathematica 23 (3):338-366.
    Turing computation over a non-linguistic domain presupposes a notation for the domain. Accordingly, computability theory studies notations for various non-linguistic domains. It illuminates how different ways of representing a domain support different finite mechanical procedures over that domain. Formal definitions and theorems yield a principled classification of notations based upon their computational properties. To understand computability theory, we must recognize that representation is a key target of mathematical inquiry. We must also recognize that computability theory is an intensional enterprise: it (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Metamathematics of Putnam’s Model-Theoretic Arguments.Tim Button - 2011 - Erkenntnis 74 (3):321-349.
    Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted models. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I examine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to metamathematical challenges.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Two arguments against realism.Timothy Bays - 2008 - Philosophical Quarterly 58 (231):193–213.
    I present two generalizations of Putnam's model-theoretic argument against realism. The first replaces Putnam's model theory with some new, and substantially simpler, model theory, while the second replaces Putnam's model theory with some more accessible results from astronomy. By design, both of these new arguments fail. But the similarities between these new arguments and Putnam's original arguments illuminate the latter's overall structure, and the flaws in these new arguments highlight the corresponding flaws in Putnam's arguments.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Brains in vats and model theory.Tim Button - 2015 - In Sanford Goldberg (ed.), The Brain in a Vat. United Kingdom: Cambridge University Press. pp. 131-154.
    Hilary Putnam’s BIV argument first occurred to him when ‘thinking about a theorem in modern logic, the “Skolem–Löwenheim Theorem”’ (Putnam 1981: 7). One of my aims in this paper is to explore the connection between the argument and the Theorem. But I also want to draw some further connections. In particular, I think that Putnam’s BIV argument provides us with an impressively versatile template for dealing with sceptical challenges. Indeed, this template allows us to unify some of Putnam’s most enduring (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Problem with Charlie: Some Remarks on Putnam, Lewis, and Williams.Timothy Bays - 2007 - Philosophical Review 116 (3):401-425.
    In his new paper, “Eligibility and Inscrutability,” J. R. G. Williams presents a surprising new challenge to David Lewis’ theory of interpretation. Although Williams frames this challenge primarily as a response to Lewis’ criticisms of Putnam’s model-theoretic argument, the challenge itself goes to the heart of Lewis’ own account of interpretation. Further, and leaving Lewis’ project aside for a moment, Williams’ argument highlights some important—and some fairly general—points concerning the relationship between model theory and semantic determinacy.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Putnam and Constructibility.Luca Bellotti - 2005 - Erkenntnis 62 (3):395-409.
    I discuss and try to evaluate the argument about constructible sets made by Putnam in ‘ ”Models and Reality”, and some of the counterarguments directed against it in the literature. I shall conclude that Putnam’s argument, while correct in substance, nevertheless has no direct bearing on the philosophical question of unintended models of set theory.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Floyd and Putnam on Wittgenstein on Gödel.Timothy Bays - 2004 - Journal of Philosophy 101 (4):197-210.
    odel’s theorem than he has often been credited with. Substantively, they find in Wittgenstein’s remarks “a philosophical claim of great interest,” and they argue that, when this claim is properly assessed, it helps to vindicate some of Wittgenstein’s broader views on G¨.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Putnam-Goodman-Kripke Paradox.Robert Kowalenko - 2022 - Acta Analytica 37 (4):575-594.
    The extensions of Goodman’s ‘grue’ predicate and Kripke’s ‘quus’ are constructed from the extensions of more familiar terms via a reinterpretation that permutes assignments of reference. Since this manoeuvre is at the heart of Putnam’s model-theoretic and permutation arguments against metaphysical realism (‘Putnam’s Paradox’), both Goodman’s New Riddle of Induction and the paradox about meaning that Kripke attributes to Wittgenstein are instances of Putnam’s. Evidence cannot selectively confirm the green-hypothesis and disconfirm the grue-hypothesis, because the theory of which the green-hypothesis (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • More on Putnam’s models: a reply to Belloti.Timothy Bays - 2007 - Erkenntnis 67 (1):119-135.
    In an earlier paper, I claimed that one version of Putnam's model-theoretic argument against realism turned on a subtle, but philosophically significant, mathematical mistake. Recently, Luca Bellotti has criticized my argument for this claim. This paper responds to Bellotti's criticisms.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Descriptivism about the Reference of Set-Theoretic Expressions: Revisiting Putnam’s Model-Theoretic Arguments.Zeynep Soysal - 2020 - The Monist 103 (4):442-454.
    Putnam’s model-theoretic arguments for the indeterminacy of reference have been taken to pose a special problem for mathematical languages. In this paper, I argue that if one accepts that there are theory-external constraints on the reference of at least some expressions of ordinary language, then Putnam’s model-theoretic arguments for mathematical languages don’t go through. In particular, I argue for a kind of descriptivism about mathematical expressions according to which their reference is “anchored” in the reference of expressions of ordinary language. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Putnam’s model-theoretic argument (meta)reconstructed: In the mirror of Carpintero’s and van Douven’s interpretations.Krystian Jobczyk - 2022 - Synthese 200 (6):1-37.
    In “Models and Reality”, H. Putnam formulated his model-theoretic argument against “metaphysical realism”. The article proposes a meta-reconstruction of Putnam’s model-theoretic argument in the light of two mutually compatible interpretations of it–elaborated by Manuel Garcia-Carpintero and Igor van Douven. A critical reflection on these interpretations and their adequacy for Putnam’s argument allows us to expose new theses coherent with Putnam’s reasoning and indicate new paths to improve this argument for our reconstruction task. In particular, we show that Putnam’s position may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Tim Button and Sean Walsh* Philosophy and Model Theory.Brice Halimi - 2020 - Philosophia Mathematica 28 (3):404-415.
    Download  
     
    Export citation  
     
    Bookmark  
  • Realism, Truthmakers, and Language: A study in meta-ontology and the relationship between language and metaphysics.J. T. M. Miller - 2014 - Dissertation, Durham University
    Metaphysics has had a long history of debate over its viability, and substantivity. This thesis explores issues connected to the realism question within the domain of metaphysics, ultimately aiming to defend a realist, substantive metaphysics by responding to so-called deflationary approaches, which have become prominent, and well supported within the recent metametaphysical and metaontological literature. To this end, I begin by examining the changing nature of the realism question. I argue that characterising realism and anti-realism through theories of truth unduly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is so magical about a theory of intrinsic intentionality?Deborah C. Smith - 2003 - Philosophical Papers 32 (1):83-96.
    Abstract Curiously missing in the vast literature on Hilary Putnam's so-called model-theoretic argument against semantic realism is any response from would-be proponents of what Putnam would call magical theories of reference. Such silence is surprising in light of the fact that such theories have occupied a significant position in the history of philosophy and the fact that there are still several prominent thinkers who would, no doubt, favor such a theory. This paper develops and examines various responses to Putnam's argument (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Review of: Hilary Putnam on Logic and Mathematics, by Geoffrey Hellman and Roy T. Cook (eds.). [REVIEW]Tim Button - 2019 - Mind 129 (516):1327-1337.
    Putnam’s most famous contribution to mathematical logic was his role in investigating Hilbert’s Tenth Problem; Putnam is the ‘P’ in the MRDP Theorem. This volume, though, focusses mostly on Putnam’s work on the philosophy of logic and mathematics. It is a somewhat bumpy ride. Of the twelve papers, two scarcely mention Putnam. Three others focus primarily on Putnam’s ‘Mathematics without foundations’ (1967), but with no interplay between them. The remaining seven papers apparently tackle unrelated themes. Some of this disjointedness would (...)
    Download  
     
    Export citation  
     
    Bookmark