Switch to: References

Add citations

You must login to add citations.
  1. Second thoughts around some of göde's writings:.G. Kreisel - 1998 - Synthese 114 (1):99-160.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Substitutions of< i> Σ_< sub> 1< sup> 0-sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic. [REVIEW]Albert Visser - 2002 - Annals of Pure and Applied Logic 114 (1):227-271.
    This paper is concerned with notions of consequence. On the one hand, we study admissible consequence, specifically for substitutions of Σ 1 0 -sentences over Heyting arithmetic . On the other hand, we study preservativity relations. The notion of preservativity of sentences over a given theory is a dual of the notion of conservativity of formulas over a given theory. We show that admissible consequence for Σ 1 0 -substitutions over HA coincides with NNIL -preservativity over intuitionistic propositional logic . (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Strong continuity implies uniform sequential continuity.Douglas Bridges, Hajime Ishihara, Peter Schuster & Luminiţa Vîţa - 2005 - Archive for Mathematical Logic 44 (7):887-895.
    Uniform sequential continuity, a property classically equivalent to sequential continuity on compact sets, is shown, constructively, to be a consequence of strong continuity on a metric space. It is then shown that in the case of a separable metric space, uniform sequential continuity implies strong continuity if and only if one adopts a certain boundedness principle that, although valid in the classical, recursive and intuitionistic setting, is independent of Heyting arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Arguments for the continuity principle.Mark van Atten & Dirk van Dalen - 2002 - Bulletin of Symbolic Logic 8 (3):329-347.
    There are two principles that lend Brouwer's mathematics the extra power beyond arithmetic. Both are presented in Brouwer's writings with little or no argument. One, the principle of bar induction, will not concern us here. The other, the continuity principle for numbers, occurs for the first time in print in [4]. It is formulated and immediately applied to show that the set of numerical choice sequences is not enumerable. In fact, the idea of the continuity property can be dated fairly (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Arguments for the Continuity Principle.Mark van Atten & Dirk Van Dalen - 2002 - Bulletin of Symbolic Logic 8 (3):329 - 347.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Effective inseparability in a topological setting.Dieter Spreen - 1996 - Annals of Pure and Applied Logic 80 (3):257-275.
    Effective inseparability of pairs of sets is an important notion in logic and computer science. We study the effective inseparability of sets which appear as index sets of subsets of an effectively given topological T0-space and discuss its consequences. It is shown that for two disjoint subsets X and Y of the space one can effectively find a witness that the index set of X cannot be separated from the index set of Y by a recursively enumerable set, if X (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Recursive models for constructive set theories.N. Beeson - 1982 - Annals of Mathematical Logic 23 (2/3):127.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Recursive models for constructive set theories.M. Beeson - 1982 - Annals of Mathematical Logic 23 (2-3):127-178.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On the completenes principle: A study of provability in heyting's arithmetic and extensions.Albert Visser - 1982 - Annals of Mathematical Logic 22 (3):263-295.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Principles of continuous choice and continuity of functions in formal systems for constructive mathematics.Michael J. Beeson - 1977 - Annals of Mathematical Logic 12 (3):249.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Realizability models refuting Ishiharaʼs boundedness principle.Peter Lietz & Thomas Streicher - 2012 - Annals of Pure and Applied Logic 163 (12):1803-1807.
    Ishiharaʼs boundedness principleBD-N was introduced in Ishihara [5] and has turned out to be most useful for constructive analysis, see e.g. Ishihara [6]. It is equivalent to the statement that every sequentially continuous function from NN to N is continuous w.r.t. the usual metric topology on NN. We construct models for higher order arithmetic and intuitionistic set theory in which both every function from NN to N is sequentially continuous and in which the axiom of choice from NN to N (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Substitutions of Σ10-sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic.Albert Visser - 2002 - Annals of Pure and Applied Logic 114 (1-3):227-271.
    This paper is concerned with notions of consequence. On the one hand, we study admissible consequence, specifically for substitutions of Σ 1 0 -sentences over Heyting arithmetic . On the other hand, we study preservativity relations. The notion of preservativity of sentences over a given theory is a dual of the notion of conservativity of formulas over a given theory. We show that admissible consequence for Σ 1 0 -substitutions over HA coincides with NNIL -preservativity over intuitionistic propositional logic . (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations