Citations of:
Add citations
You must login to add citations.


Must probabilities be countably additive? On the one hand, arguably, requiring countable additivity is too restrictive. As de Finetti pointed out, there are situations in which it is reasonable to use merely finitely additive probabilities. On the other hand, countable additivity is fruitful. It can be used to prove deep mathematical theorems that do not follow from finite additivity alone. One of the most philosophically important examples of such a result is the Bayesian convergence to the truth theorem, which says (...) 

Bayesians since Savage (1972) have appealed to asymptotic results to counter charges of excessive subjectivity. Their claim is that objectionable differences in prior probability judgments will vanish as agents learn from evidence, and individual agents will converge to the truth. Glymour (1980), Earman (1992) and others have voiced the complaint that the theorems used to support these claims tell us, not how probabilities updated on evidence will actually}behave in the limit, but merely how Bayesian agents believe they will behave, suggesting (...) 

This essay has two aims. The first is to correct an increasingly popular way of misunderstanding Belot's Orgulity Argument. The Orgulity Argument charges Bayesianism with defect as a normative epistemology. For concreteness, our argument focuses on Cisewski et al.'s recent rejoinder to Belot. The conditions that underwrite their version of the argument are too strong and Belot does not endorse them on our reading. A more compelling version of the Orgulity Argument than Cisewski et al. present is available, howevera point (...) 

I present an underdetermination argument that targets a certain strong form of scientific objectivity rather than scientific realismand argue that the considerations raised should nonetheless unsettle scientific realists. 

This article develops an axiomatic theory of induction that speaks to the recent debate on Bayesian orgulity. It shows the exact principles associated with the belief that data can corroborate universal laws. We identify two types of disbelief about induction: skepticism that the existence of universal laws of nature can be determined empirically, and skepticism that the true law of nature, if it exists, can be successfully identified. We formalize and characterize these two dispositions toward induction by introducing novel axioms (...) 