Switch to: References

Add citations

You must login to add citations.
  1. Carnap, Goguen, and the hyperontologies: Logical pluralism and heterogeneous structuring in ontology design. [REVIEW]Dominik Lücke - 2010 - Logica Universalis 4 (2):255-333.
    This paper addresses questions of universality related to ontological engineering, namely aims at substantiating (negative) answers to the following three basic questions: (i) Is there a ‘universal ontology’?, (ii) Is there a ‘universal formal ontology language’?, and (iii) Is there a universally applicable ‘mode of reasoning’ for formal ontologies? To support our answers in a principled way, we present a general framework for the design of formal ontologies resting on two main principles: firstly, we endorse Rudolf Carnap’s principle of logical (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Spatial Reasoning and Ontology: Parts, Wholes, and Locations.Achille C. Varzi - 2007 - In Marco Aiello, Ian Pratt-Hartmann & Johan van Benthem (eds.), Handbook of Spatial Logics. Springer Verlag. pp. 945-1038.
    A critical survey of the fundamental philosophical issues in the logic and formal ontology of space, with special emphasis on the interplay between mereology (the theory of parthood relations), topology (broadly understood as a theory of qualitative spatial relations such as continuity and contiguity), and the theory of spatial location proper.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Combining topological and size information for spatial reasoning.Alfonso Gerevini & Jochen Renz - 2002 - Artificial Intelligence 137 (1-2):1-42.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modal Logics Based on Mathematical Morphology for Qualitative Spatial Reasoning.Isabelle Bloch - 2002 - Journal of Applied Non-Classical Logics 12 (3):399-423.
    We propose in this paper to construct modal logics based on mathematical morphology. The contribution of this paper is twofold. First we show that mathematical morphology can be used to define modal operators in the context of normal modal logics. We propose definitions of modal operators as algebraic dilations and erosions, based on the notion of adjunction. We detail the particular case of morphological dilations and erosions, and of there compositions, as opening and closing. An extension to the fuzzy case (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Canonical Model of the Region Connection Calculus.Jochen Renz - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):469-494.
    Although the computational properties of the Region Connection Calculus RCC-8 are well studied, reasoning with RCC-8 entails several representational problems. This includes the problem of representing arbitrary spatial regions in a computational framework, leading to the problem of generating a realization of a consistent set of RCC-8 constraints. A further problem is that RCC-8 performs reasoning about topological space, which does not have a particular dimension. Most applications of spatial reasoning, however, deal with two- or three-dimensional space. Therefore, a consistent (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Calculus of Regions Respecting Both Measure and Topology.Tamar Lando & Dana Scott - 2019 - Journal of Philosophical Logic 48 (5):825-850.
    Say that space is ‘gunky’ if every part of space has a proper part. Traditional theories of gunk, dating back to the work of Whitehead in the early part of last century, modeled space in the Boolean algebra of regular closed subsets of Euclidean space. More recently a complaint was brought against that tradition in Arntzenius and Russell : Lebesgue measure is not even finitely additive over the algebra, and there is no countably additive measure on the algebra. Arntzenius advocated (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The universal modality, the center of a Heyting algebra, and the Blok–Esakia theorem.Guram Bezhanishvili - 2010 - Annals of Pure and Applied Logic 161 (3):253-267.
    We introduce the bimodal logic , which is the extension of Bennett’s bimodal logic by Grzegorczyk’s axiom □→p)→p and show that the lattice of normal extensions of the intuitionistic modal logic WS5 is isomorphic to the lattice of normal extensions of , thus generalizing the Blok–Esakia theorem. We also introduce the intuitionistic modal logic WS5.C, which is the extension of WS5 by the axiom →, and the bimodal logic , which is the extension of Shehtman’s bimodal logic by Grzegorczyk’s axiom, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mereotopology in 2nd-Order and Modal Extensions of Intuitionistic Propositional Logic.Paolo Torrini, John G. Stell & Brandon Bennett - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):495-525.
    We show how mereotopological notions can be expressed by extending intuitionistic propositional logic with propositional quantification and a strong modal operator. We first prove completeness for the logics wrt Kripke models; then we trace the correspondence between Kripke models and topological spaces that have been enhanced with an explicit notion of expressible region. We show how some qualitative spatial notions can be expressed in topological terms. We use the semantical and topological results in order to show how in some extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Completeness of S4 with respect to the real line: revisited.Gurman Bezhanishvili & Mai Gehrke - 2005 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A Logic for Metric and Topology.Frank Wolter & Michael Zakharyaschev - 2005 - Journal of Symbolic Logic 70 (3):795 - 828.
    We propose a logic for reasoning about metric spaces with the induced topologies. It combines the 'qualitative' interior and closure operators with 'quantitative' operators 'somewhere in the sphere of radius r.' including or excluding the boundary. We supply the logic with both the intended metric space semantics and a natural relational semantics, and show that the latter (i) provides finite partial representations of (in general) infinite metric models and (ii) reduces the standard '∈-definitions' of closure and interior to simple constraints (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A modal logic framework for reasoning about comparative distances and topology.Mikhail Sheremet, Frank Wolter & Michael Zakharyaschev - 2010 - Annals of Pure and Applied Logic 161 (4):534-559.
    We propose and investigate a uniform modal logic framework for reasoning about topology and relative distance in metric and more general distance spaces, thus enabling the comparison and combination of logics from distinct research traditions such as Tarski’s for topological closure and interior, conditional logics, and logics of comparative similarity. This framework is obtained by decomposing the underlying modal-like operators into first-order quantifier patterns. We then show that quite a powerful and natural fragment of the resulting first-order logic can be (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Querying incomplete information in RDF with SPARQL.Charalampos Nikolaou & Manolis Koubarakis - 2016 - Artificial Intelligence 237 (C):138-171.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Completeness of S4 with respect to the real line: revisited.Guram Bezhanishvili & Mai Gehrke - 2004 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Modal Multilogic of Geometry.Philippe Balbiani - 1998 - Journal of Applied Non-Classical Logics 8 (3):259-281.
    ABSTRACT A spatial logic is a modal logic of which the models are the mathematical models of space. Successively considering the mathematical models of space that are the incidence geometry and the projective geometry, we will successively establish the language, the semantical basis, the axiomatical presentation, the proof of the decidability and the proof of the completeness of INC, the modal multilogic of incidence geometry, and PRO, the modal multilogic of projective geometry.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ontological modelling of form and function for architectural design.Mehul Bhatt, Joana Hois & Oliver Kutz - 2012 - Applied ontology 7 (3):233-267.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Topological Constraint Language with Component Counting.Ian Pratt-Hartmann - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):441-467.
    A topological constraint language is a formal language whose variables range over certain subsets of topological spaces, and whose nonlogical primitives are interpreted as topological relations and functions taking these subsets as arguments. Thus, topological constraint languages typically allow us to make assertions such as “region V1 touches the boundary of region V2”, “region V3 is connected” or “region V4 is a proper part of the closure of region V5”. A formula f in a topological constraint language is said to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A proof system for contact relation algebras.Ivo Düntsch & Ewa Orłowska - 2000 - Journal of Philosophical Logic 29 (3):241-262.
    Contact relations have been studied in the context of qualitative geometry and physics since the early 1920s, and have recently received attention in qualitative spatial reasoning. In this paper, we present a sound and complete proof system in the style of Rasiowa and Sikorski (1963) for relation algebras generated by a contact relation.
    Download  
     
    Export citation  
     
    Bookmark   7 citations