Switch to: References

Add citations

You must login to add citations.
  1. Algebraic semantics for deductive systems.W. Blok & J. Rebagliato - 2003 - Studia Logica 74 (1-2):153 - 180.
    The notion of an algebraic semantics of a deductive system was proposed in [3], and a preliminary study was begun. The focus of [3] was the definition and investigation of algebraizable deductive systems, i.e., the deductive systems that possess an equivalent algebraic semantics. The present paper explores the more general property of possessing an algebraic semantics. While a deductive system can have at most one equivalent algebraic semantics, it may have numerous different algebraic semantics. All of these give rise to (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Willem Blok and Modal Logic.W. Rautenberg, M. Zakharyaschev & F. Wolter - 2006 - Studia Logica 83 (1):15-30.
    We present our personal view on W.J. Blok's contribution to modal logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An observation concerning porte's rule in modal logic.Rohan French & Lloyd Humberstone - 2015 - Bulletin of the Section of Logic 44 (1/2):25-31.
    It is well known that no consistent normal modal logic contains (as theorems) both ♦A and ♦¬A (for any formula A). Here we observe that this claim can be strengthened to the following: for any formula A, either no consistent normal modal logic contains ♦A, or else no consistent normal modal logic contains ♦¬A.
    Download  
     
    Export citation  
     
    Bookmark  
  • Protoalgebraic logics.W. J. Blok & Don Pigozzi - 1986 - Studia Logica 45 (4):337 - 369.
    There exist important deductive systems, such as the non-normal modal logics, that are not proper subjects of classical algebraic logic in the sense that their metatheory cannot be reduced to the equational metatheory of any particular class of algebras. Nevertheless, most of these systems are amenable to the methods of universal algebra when applied to the matrix models of the system. In the present paper we consider a wide class of deductive systems of this kind called protoalgebraic logics. These include (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • (1 other version)In Memory of Willem Johannes Blok 1947-2003.Joel Berman, Wieslaw Dziobiak, Don Pigozzi & James Raftery - 2006 - Studia Logica 83 (1-3):5-14.
    Download  
     
    Export citation  
     
    Bookmark  
  • On logics with coimplication.Frank Wolter - 1998 - Journal of Philosophical Logic 27 (4):353-387.
    This paper investigates (modal) extensions of Heyting-Brouwer logic, i.e., the logic which results when the dual of implication (alias coimplication) is added to the language of intuitionistic logic. We first develop matrix as well as Kripke style semantics for those logics. Then, by extending the Gö;del-embedding of intuitionistic logic into S4, it is shown that all (modal) extensions of Heyting-Brouwer logic can be embedded into tense logics (with additional modal operators). An extension of the Blok-Esakia-Theorem is proved for this embedding.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Willem Blok's Contribution to Abstract Algebraic Logic.Ramon Jansana - 2006 - Studia Logica 83 (1-3):31-48.
    Willem Blok was one of the founders of the field Abstract Algebraic Logic. The paper describes his research in this field.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Abstract modal logics.Ramon Jansana - 1995 - Studia Logica 55 (2):273 - 299.
    In this paper we develop a general framework to deal with abstract logics associated with a given modal logic. In particular we study the abstract logics associated with the weak and strong deductive systems of the normal modal logicK and its intuitionistic version. We also study the abstract logics that satisfy the conditionC +(X)=C( in I n X) and find the modal deductive systems whose abstract logics, in addition to being classical or intuitionistic, satisfy that condition. Finally we study the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Complete additivity and modal incompleteness.Wesley H. Holliday & Tadeusz Litak - 2019 - Review of Symbolic Logic 12 (3):487-535.
    In this article, we tell a story about incompleteness in modal logic. The story weaves together an article of van Benthem, “Syntactic aspects of modal incompleteness theorems,” and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, ${\cal V}$-baos. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem’s article resolves the open question (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations