Switch to: References

Citations of:

Protoalgebraic logics

Studia Logica 45 (4):337 - 369 (1986)

Add citations

You must login to add citations.
  1. Weakly algebraizable logics.Janusz Czelakowski & Ramon Jansana - 2000 - Journal of Symbolic Logic 65 (2):641-668.
    In the paper we study the class of weakly algebraizable logics, characterized by the monotonicity and injectivity of the Leibniz operator on the theories of the logic. This class forms a new level in the non-linear hierarchy of protoalgebraic logics.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Quasivarieties of logic, regularity conditions and parameterized algebraization.G. Barbour & J. Raftery - 2003 - Studia Logica 74 (1-2):99 - 152.
    Relatively congruence regular quasivarieties and quasivarieties of logic have noticeable similarities. The paper provides a unifying framework for them which extends the Blok-Pigozzi theory of elementarily algebraizable (and protoalgebraic) deductive systems. In this extension there are two parameters: a set of terms and a variable. When the former is empty or consists of theorems, the Blok-Pigozzi theory is recovered, and the variable is redundant. On the other hand, a class of membership logics is obtained when the variable is the only (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Logics of left variable inclusion and Płonka sums of matrices.S. Bonzio, T. Moraschini & M. Pra Baldi - 2020 - Archive for Mathematical Logic (1):49-76.
    The paper aims at studying, in full generality, logics defined by imposing a variable inclusion condition on a given logic $$\vdash $$. We prove that the description of the algebraic counterpart of the left variable inclusion companion of a given logic $$\vdash $$ is related to the construction of Płonka sums of the matrix models of $$\vdash $$. This observation allows to obtain a Hilbert-style axiomatization of the logics of left variable inclusion, to describe the structure of their reduced models, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Explicating Logical Independence.Lloyd Humberstone - 2020 - Journal of Philosophical Logic 49 (1):135-218.
    Accounts of logical independence which coincide when applied in the case of classical logic diverge elsewhere, raising the question of what a satisfactory all-purpose account of logical independence might look like. ‘All-purpose’ here means: working satisfactorily as applied across different logics, taken as consequence relations. Principal candidate characterizations of independence relative to a consequence relation are that there the consequence relation concerned is determined by only by classes of valuations providing for all possible truth-value combinations for the formulas whose independence (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A study of truth predicates in matrix semantics.Tommaso Moraschini - 2018 - Review of Symbolic Logic 11 (4):780-804.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Three-elemnt non-finitely axiomatizable matrices and term-equivalence.Katarzyna Pałasińska - 2014 - Logic and Logical Philosophy 23 (4):481-497.
    It was shown in [5] that all two-element matrices are finitely based independently of their classification by term equivalence. In particular, each 2-valued matrix is finitely axiomatizable. We show below that for certain two not finitely axiomatizable 3-valued matrices this property is also preserved under term equivalence. The general problem, whether finite axiomatizability of a finite matrix is preserved under term-equivalence, is still open, as well as the related problem as to whether the consequence operation of a finite matrix is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Grades of Discrimination: Indiscernibility, Symmetry, and Relativity.Tim Button - 2017 - Notre Dame Journal of Formal Logic 58 (4):527-553.
    There are several relations which may fall short of genuine identity, but which behave like identity in important respects. Such grades of discrimination have recently been the subject of much philosophical and technical discussion. This paper aims to complete their technical investigation. Grades of indiscernibility are defined in terms of satisfaction of certain first-order formulas. Grades of symmetry are defined in terms of symmetries on a structure. Both of these families of grades of discrimination have been studied in some detail. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Closure Properties of the Class of Full G-models of a Deductive System.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2006 - Studia Logica 83 (1-3):215-278.
    In this paper we consider the structure of the class FGModS of full generalized models of a deductive system S from a universal-algebraic point of view, and the structure of the set of all the full generalized models of S on a fixed algebra A from the lattice-theoretical point of view; this set is represented by the lattice FACSs A of all algebraic closed-set systems C on A such that (A, C) ε FGModS. We relate some properties of these structures (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fragments of R-Mingle.W. J. Blok & J. G. Raftery - 2004 - Studia Logica 78 (1-2):59-106.
    The logic RM and its basic fragments (always with implication) are considered here as entire consequence relations, rather than as sets of theorems. A new observation made here is that the disjunction of RM is definable in terms of its other positive propositional connectives, unlike that of R. The basic fragments of RM therefore fall naturally into two classes, according to whether disjunction is or is not definable. In the equivalent quasivariety semantics of these fragments, which consist of subreducts of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The logic of distributive bilattices.Félix Bou & Umberto Rivieccio - 2011 - Logic Journal of the IGPL 19 (1):183-216.
    Bilattices, introduced by Ginsberg as a uniform framework for inference in artificial intelligence, are algebraic structures that proved useful in many fields. In recent years, Arieli and Avron developed a logical system based on a class of bilattice-based matrices, called logical bilattices, and provided a Gentzen-style calculus for it. This logic is essentially an expansion of the well-known Belnap–Dunn four-valued logic to the standard language of bilattices. Our aim is to study Arieli and Avron’s logic from the perspective of abstract (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • 2003 Annual Meeting of the Association for Symbolic Logic.Andreas Blass - 2004 - Bulletin of Symbolic Logic 10 (1):120-145.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)In Memory of Willem Johannes Blok 1947-2003.Joel Berman, Wieslaw Dziobiak, Don Pigozzi & James Raftery - 2006 - Studia Logica 83 (1-3):5-14.
    Download  
     
    Export citation  
     
    Bookmark  
  • First order logic without equality on relativized semantics.Amitayu Banerjee & Mohamed Khaled - 2018 - Annals of Pure and Applied Logic 169 (11):1227-1242.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Relevant Consequence Relations: An Invitation.Guillermo Badia, Libor Běhounek, Petr Cintula & Andrew Tedder - 2024 - Review of Symbolic Logic 17 (3):762-792.
    We generalize the notion of consequence relation standard in abstract treatments of logic to accommodate intuitions of relevance. The guiding idea follows the use criterion, according to which in order for some premises to have some conclusion(s) as consequence(s), the premises must each be used in some way to obtain the conclusion(s). This relevance intuition turns out to require not just a failure of monotonicity, but also a move to considering consequence relations as obtaining between multisets. We motivate and state (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Suszko operator relative to truth‐equational logics.Hugo Albuquerque - 2021 - Mathematical Logic Quarterly 67 (2):226-240.
    This note presents some new results from [1] about the Suszko operator and truth‐equational logics, following the works of Czelakowski [11] and Raftery [17]. It is proved that the Suszko operator relative to a truth‐equational logic preserves suprema and commutes with endomorphisms. Together with injectivity, proved by Raftery in [17], the Suszko operator relative to a truth‐equational logic is a structural representation, as defined in [15]. Furthermore, if is a quasivariety, then the Suszko operator relative to a truth‐equational logic is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Compatibility operators in abstract algebraic logic.Hugo Albuquerque, Josep Maria Font & Ramon Jansana - 2016 - Journal of Symbolic Logic 81 (2):417-462.
    This paper presents a unified framework that explains and extends the already successful applications of the Leibniz operator, the Suszko operator, and the Tarski operator in recent developments in abstract algebraic logic. To this end, we refine Czelakowski’s notion of an S-compatibility operator, and introduce the notion of coherent family of S-compatibility operators, for a sentential logic S. The notion of coherence is a restricted property of commutativity with inverse images by surjective homomorphisms, which is satisfied by both the Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Categorical abstract algebraic logic categorical algebraization of first-order logic without terms.George Voutsadakis - 2005 - Archive for Mathematical Logic 44 (4):473-491.
    An algebraization of multi-signature first-order logic without terms is presented. Rather than following the traditional method of choosing a type of algebras and constructing an appropriate variety, as is done in the case of cylindric and polyadic algebras, a new categorical algebraization method is used: The substitutions of formulas of one signature for relation symbols in another are treated in the object language. This enables the automatic generation via an adjunction of an algebraic theory. The algebras of this theory are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (3 other versions)Categorical abstract algebraic logic: The criterion for deductive equivalence: The criterion for deductive equivalence.George Voutsadakis - 2003 - Mathematical Logic Quarterly 49 (4):347.
    Equivalent deductive systems were introduced in [4] with the goal of treating 1‐deductive systems and algebraic 2‐deductive systems in a uniform way. Results of [3], appropriately translated and strengthened, show that two deductive systems over the same language type are equivalent if and only if their lattices of theories are isomorphic via an isomorphism that commutes with substitutions. Deductive equivalence of π‐institutions [14, 15] generalizes the notion of equivalence of deductive systems. In [15, Theorem 10.26] this criterion for the equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (3 other versions)Categorical abstract algebraic logic: The criterion for deductive equivalence.George Voutsadakis - 2003 - Mathematical Logic Quarterly 49 (4):347-352.
    Equivalent deductive systems were introduced in [4] with the goal of treating 1-deductive systems and algebraic 2-deductive systems in a uniform way. Results of [3], appropriately translated and strengthened, show that two deductive systems over the same language type are equivalent if and only if their lattices of theories are isomorphic via an isomorphism that commutes with substitutions. Deductive equivalence of π-institutions [14, 15] generalizes the notion of equivalence of deductive systems. In [15, Theorem 10.26] this criterion for the equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (3 other versions)Categorical abstract algebraic logic: Equivalent institutions.George Voutsadakis - 2003 - Studia Logica 74 (1-2):275 - 311.
    A category theoretic generalization of the theory of algebraizable deductive systems of Blok and Pigozzi is developed. The theory of institutions of Goguen and Burstall is used to provide the underlying framework which replaces and generalizes the universal algebraic framework based on the notion of a deductive system. The notion of a term -institution is introduced first. Then the notions of quasi-equivalence, strong quasi-equivalence and deductive equivalence are defined for -institutions. Necessary and sufficient conditions are given for the quasi-equivalence and (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Categorical abstract algebraic logic: The largest theory system included in a theory family.George Voutsadakis - 2006 - Mathematical Logic Quarterly 52 (3):288-294.
    In this note, it is shown that, given a π -institution ℐ = 〈Sign, SEN, C 〉, with N a category of natural transformations on SEN, every theory family T of ℐ includes a unique largest theory system equation image of ℐ. equation image satisfies the important property that its N -Leibniz congruence system always includes that of T . As a consequence, it is shown, on the one hand, that the relation ΩN = ΩN characterizes N -protoalgebraicity inside the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Categorical abstract algebraic logic: The categorical Suszko operator.George Voutsadakis - 2007 - Mathematical Logic Quarterly 53 (6):616-635.
    Czelakowski introduced the Suszko operator as a basis for the development of a hierarchy of non-protoalgebraic logics, paralleling the well-known abstract algebraic hierarchy of protoalgebraic logics based on the Leibniz operator of Blok and Pigozzi. The scope of the theory of the Leibniz operator was recently extended to cover the case of, the so-called, protoalgebraic π-institutions. In the present work, following the lead of Czelakowski, an attempt is made at lifting parts of the theory of the Suszko operator to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Categorical Abstract Algebraic Logic: Structurality, protoalgebraicity, and correspondence.George Voutsadakis - 2009 - Mathematical Logic Quarterly 55 (1):51-67.
    The notion of an ℐ -matrix as a model of a given π -institution ℐ is introduced. The main difference from the approach followed so far in CategoricalAlgebraic Logic and the one adopted here is that an ℐ -matrix is considered modulo the entire class of morphisms from the underlying N -algebraic system of ℐ into its own underlying algebraic system, rather than modulo a single fixed -logical morphism. The motivation for introducing ℐ -matrices comes from a desire to formulate (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categorical abstract algebraic logic metalogical properties.George Voutsadakis - 2003 - Studia Logica 74 (3):369 - 398.
    Metalogical properties that have traditionally been studied in the deductive system context (see, e.g., [21]) and transferred later to the institution context [33], are here formulated in the -institution context. Preservation under deductive equivalence of -institutions is investigated. If a property is known to hold in all algebraic -institutions and is preserved under deductive equivalence, then it follows that it holds in all algebraizable -institutions in the sense of [36].
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Categorical Abstract Algebraic Logic: Truth-Equational $pi$-Institutions.George Voutsadakis - 2015 - Notre Dame Journal of Formal Logic 56 (2):351-378.
    Finitely algebraizable deductive systems were introduced by Blok and Pigozzi to capture the essential properties of those deductive systems that are very tightly connected to quasivarieties of universal algebras. They include the equivalential logics of Czelakowski. Based on Blok and Pigozzi’s work, Herrmann defined algebraizable deductive systems. These are the equivalential deductive systems that are also truth-equational, in the sense that the truth predicate of the class of their reduced matrix models is explicitly definable by some set of unary equations. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Categorical Abstract Algebraic Logic: Prealgebraicity and Protoalgebraicity.George Voutsadakis - 2007 - Studia Logica 85 (2):215-249.
    Two classes of π are studied whose properties are similar to those of the protoalgebraic deductive systems of Blok and Pigozzi. The first is the class of N-protoalgebraic π-institutions and the second is the wider class of N-prealgebraic π-institutions. Several characterizations are provided. For instance, N-prealgebraic π-institutions are exactly those π-institutions that satisfy monotonicity of the N-Leibniz operator on theory systems and N-protoalgebraic π-institutions those that satisfy monotonicity of the N-Leibniz operator on theory families. Analogs of the correspondence property of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Categorical Abstract Algebraic Logic: Behavioral π-Institutions.George Voutsadakis - 2014 - Studia Logica 102 (3):617-646.
    Recently, Caleiro, Gon¸calves and Martins introduced the notion of behaviorally algebraizable logic. The main idea behind their work is to replace, in the traditional theory of algebraizability of Blok and Pigozzi, unsorted equational logic with multi-sorted behavioral logic. The new notion accommodates logics over many-sorted languages and with non-truth-functional connectives. Moreover, it treats logics that are not algebraizable in the traditional sense while, at the same time, shedding new light to the equivalent algebraic semantics of logics that are algebraizable according (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Speaking about transitive frames in propositional languages.Yasuhito Suzuki, Frank Wolter & Michael Zakharyaschev - 1998 - Journal of Logic, Language and Information 7 (3):317-339.
    This paper is a comparative study of the propositional intuitionistic (non-modal) and classical modal languages interpreted in the standard way on transitive frames. It shows that, when talking about these frames rather than conventional quasi-orders, the intuitionistic language displays some unusual features: its expressive power becomes weaker than that of the modal language, the induced consequence relation does not have a deduction theorem and is not protoalgebraic. Nevertheless, the paper develops a manageable model theory for this consequence and its extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Algebraic Study of Two Deductive Systems of Relevance Logic.Josep Maria Font & Gonzalo Rodríguez - 1994 - Notre Dame Journal of Formal Logic 35 (3):369-397.
    In this paper two deductive systems associated with relevance logic are studied from an algebraic point of view. One is defined by the familiar, Hilbert-style, formalization of R; the other one is a weak version of it, called WR, which appears as the semantic entailment of the Meyer-Routley-Fine semantics, and which has already been suggested by Wójcicki for other reasons. This weaker consequence is first defined indirectly, using R, but we prove that the first one turns out to be an (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Finite basis theorem for Filter-distributive protoalgebraic deductive systems and strict universal horn classes.Katarzyna Pałasińska - 2003 - Studia Logica 74 (1-2):233 - 273.
    We show that a finitely generated protoalgebraic strict universal Horn class that is filter-distributive is finitely based. Equivalently, every protoalgebraic and filter-distributive multidimensional deductive system determined by a finite set of finite matrices can be presented by finitely many axioms and rules.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Order algebraizable logics.James G. Raftery - 2013 - Annals of Pure and Applied Logic 164 (3):251-283.
    This paper develops an order-theoretic generalization of Blok and Pigozziʼs notion of an algebraizable logic. Unavoidably, the ordered model class of a logic, when it exists, is not unique. For uniqueness, the definition must be relativized, either syntactically or semantically. In sentential systems, for instance, the order algebraization process may be required to respect a given but arbitrary polarity on the signature. With every deductive filter of an algebra of the pertinent type, the polarity associates a reflexive and transitive relation (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Inconsistency lemmas in algebraic logic.James G. Raftery - 2013 - Mathematical Logic Quarterly 59 (6):393-406.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Admissible Rules and the Leibniz Hierarchy.James G. Raftery - 2016 - Notre Dame Journal of Formal Logic 57 (4):569-606.
    This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and significance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the nonalgebraizable fragments of relevance logic are considered.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Contextual Deduction Theorems.J. G. Raftery - 2011 - Studia Logica 99 (1-3):279-319.
    Logics that do not have a deduction-detachment theorem (briefly, a DDT) may still possess a contextual DDT —a syntactic notion introduced here for arbitrary deductive systems, along with a local variant. Substructural logics without sentential constants are natural witnesses to these phenomena. In the presence of a contextual DDT, we can still upgrade many weak completeness results to strong ones, e.g., the finite model property implies the strong finite model property. It turns out that a finitary system has a contextual (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Gentzen system for conditional logic.Fernando Guzmán - 1994 - Studia Logica 53 (2):243 - 257.
    Conditional logic is the deductive system , where is the set of propositional connectives {, ,} and is the structural finitary consequence relation on the absolutely free algebra that preserves degrees of truth over the structure of truth values C, . HereC is the non-commutative regular extension of the 2-element Boolean algebra to 3 truth values {t, u, f}, andfut. In this paper we give a Gentzen type axiomatization for conditional logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Algebraic logic for classical conjunction and disjunction.Josep M. Font & Ventura Verdú - 1991 - Studia Logica 50 (3):391 - 419.
    In this paper we study the relations between the fragment L of classical logic having just conjunction and disjunction and the variety D of distributive lattices, within the context of Algebraic Logic. We prove that these relations cannot be fully expressed either with the tools of Blok and Pigozzi's theory of algebraizable logics or with the use of reduced matrices for L. However, these relations can be naturally formulated when we introduce a new notion of model of a sequent calculus. (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • An abstract algebraic logic approach to tetravalent modal logics.Josep Font & Miquel Rius - 2000 - Journal of Symbolic Logic 65 (2):481-518.
    This paper contains a joint study of two sentential logics that combine a many-valued character, namely tetravalence, with a modal character; one of them is normal and the other one quasinormal. The method is to study their algebraic counterparts and their abstract models with the tools of Abstract Algebraic Logic, and particularly with those of Brown and Suszko's theory of abstract logics as recently developed by Font and Jansana in their "A General Algebraic Semantics for Sentential Logics". The logics studied (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Freeness in classes without equality.Raimon Elgueta - 1999 - Journal of Symbolic Logic 64 (3):1159-1194.
    This paper is a continuation of [27], where we provide the background and the basic tools for studying the structural properties of classes of models over languages without equality. In the context of such languages, it is natural to make distinction between two kinds of classes, the so-called abstract classes, which correspond to those closed under isomorphic copies in the presence of equality, and the reduced classes, i.e., those obtained by factoring structures by their largest congruences. The generic problem described (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relation Formulas for Protoalgebraic Equality Free Quasivarieties; Pałasińska’s Theorem Revisited.Anvar M. Nurakunov & Michał M. Stronkowski - 2013 - Studia Logica 101 (4):827-847.
    We provide a new proof of the following Pałasińska's theorem: Every finitely generated protoalgebraic relation distributive equality free quasivariety is finitely axiomatizable. The main tool we use are ${\mathcal{Q}}$ Q -relation formulas for a protoalgebraic equality free quasivariety ${\mathcal{Q}}$ Q . They are the counterparts of the congruence formulas used for describing the generation of congruences in algebras. Having this tool in hand, we prove a finite axiomatization theorem for ${\mathcal{Q}}$ Q when it has definable principal ${\mathcal{Q}}$ Q -subrelations. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Equational Completeness Theorems.Tommaso Moraschini - 2022 - Journal of Symbolic Logic 87 (4):1522-1575.
    A logic is said to admit an equational completeness theorem when it can be interpreted into the equational consequence relative to some class of algebras. We characterize logics admitting an equational completeness theorem that are either locally tabular or have some tautology. In particular, it is shown that a protoalgebraic logic admits an equational completeness theorem precisely when it has two distinct logically equivalent formulas. While the problem of determining whether a logic admits an equational completeness theorem is shown to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A computational glimpse at the Leibniz and Frege hierarchies.Tommaso Moraschini - 2018 - Annals of Pure and Applied Logic 169 (1):1-20.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Relative Interpretation Between Logics.Toby Meadows - 2021 - Erkenntnis 88 (8):3203-3220.
    Interpretation is commonly used in mathematical logic to compare different theories and identify cases where two theories are for almost all intents and purposes the same. Similar techniques are used in the comparison between alternative logics although the links between these approaches are not transparent. This paper generalizes theoretical comparison techniques to the case of logical comparison using an extremely general approach to semantics that provides a very generous playing field upon which to make our comparisons. In particular, we aim (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Malinowski modalization, modalization through fibring and the Leibniz hierarchy.M. A. Martins & G. Voutsadakis - 2013 - Logic Journal of the IGPL 21 (5):836-852.
    Download  
     
    Export citation  
     
    Bookmark  
  • The algebraic significance of weak excluded middle laws.Tomáš Lávička, Tommaso Moraschini & James G. Raftery - 2022 - Mathematical Logic Quarterly 68 (1):79-94.
    For (finitary) deductive systems, we formulate a signature‐independent abstraction of the weak excluded middle law (WEML), which strengthens the existing general notion of an inconsistency lemma (IL). Of special interest is the case where a quasivariety algebraizes a deductive system ⊢. We prove that, in this case, if ⊢ has a WEML (in the general sense) then every relatively subdirectly irreducible member of has a greatest proper ‐congruence; the converse holds if ⊢ has an inconsistency lemma. The result extends, in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Correspondences between Gentzen and Hilbert Systems.J. G. Raftery - 2006 - Journal of Symbolic Logic 71 (3):903 - 957.
    Most Gentzen systems arising in logic contain few axiom schemata and many rule schemata. Hilbert systems, on the other hand, usually contain few proper inference rules and possibly many axioms. Because of this, the two notions tend to serve different purposes. It is common for a logic to be specified in the first instance by means of a Gentzen calculus, whereupon a Hilbert-style presentation ‘for’ the logic may be sought—or vice versa. Where this has occurred, the word ‘for’ has taken (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Willem Blok's Contribution to Abstract Algebraic Logic.Ramon Jansana - 2006 - Studia Logica 83 (1-3):31-48.
    Willem Blok was one of the founders of the field Abstract Algebraic Logic. The paper describes his research in this field.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Poset of All Logics III: Finitely Presentable Logics.Ramon Jansana & Tommaso Moraschini - 2020 - Studia Logica 109 (3):539-580.
    A logic in a finite language is said to be finitely presentable if it is axiomatized by finitely many finite rules. It is proved that binary non-indexed products of logics that are both finitely presentable and finitely equivalential are essentially finitely presentable. This result does not extend to binary non-indexed products of arbitrary finitely presentable logics, as shown by a counterexample. Finitely presentable logics are then exploited to introduce finitely presentable Leibniz classes, and to draw a parallel between the Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Poset of All Logics I: Interpretations and Lattice Structure.R. Jansana & T. Moraschini - 2021 - Journal of Symbolic Logic 86 (3):935-964.
    A notion of interpretation between arbitrary logics is introduced, and the poset$\mathsf {Log}$of all logics ordered under interpretability is studied. It is shown that in$\mathsf {Log}$infima of arbitrarily large sets exist, but binary suprema in general do not. On the other hand, the existence of suprema of sets of equivalential logics is established. The relations between$\mathsf {Log}$and the lattice of interpretability types of varieties are investigated.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Poset of All Logics II: Leibniz Classes and Hierarchy.R. Jansana & T. Moraschini - 2023 - Journal of Symbolic Logic 88 (1):324-362.
    A Leibniz class is a class of logics closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products of sets of logics. We study the complete lattice of all Leibniz classes, called the Leibniz hierarchy. In particular, it is proved that the classes of truth-equational and assertional logics are meet-prime in the Leibniz hierarchy, while the classes of protoalgebraic and equivalential logics are meet-reducible. However, the last two classes are shown to be determined by Leibniz conditions consisting of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Abstract modal logics.Ramon Jansana - 1995 - Studia Logica 55 (2):273 - 299.
    In this paper we develop a general framework to deal with abstract logics associated with a given modal logic. In particular we study the abstract logics associated with the weak and strong deductive systems of the normal modal logicK and its intuitionistic version. We also study the abstract logics that satisfy the conditionC +(X)=C( in I n X) and find the modal deductive systems whose abstract logics, in addition to being classical or intuitionistic, satisfy that condition. Finally we study the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation