Switch to: References

Add citations

You must login to add citations.
  1. Unfamiliarity in Logic? How to Unravel McSweeney’s Dilemma for Logical Realism.Matteo Baggio - 2024 - Acta Analytica 39 (3):439-465.
    Logical realism is the metaphysical view asserting that the facts of logic exist and are mind-and-language independent. McSweeney argues that if logical realism is true, we encounter a dilemma. Either we cannot determine which of the two logically equivalent theories holds a fundamental status, or neither theory can be considered fundamental. These two conclusions together constitute what is known as the _Unfamiliarity Dilemma_, which poses significant challenges to our understanding of the epistemological and metaphysical features of logic. In this article, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Lewisian Argument Against Platonism, or Why Theses About Abstract Objects Are Unintelligible.Jack Himelright - 2023 - Erkenntnis 88 (7):3037–3057.
    In this paper, I argue that all expressions for abstract objects are meaningless. My argument closely follows David Lewis’ argument against the intelligibility of certain theories of possible worlds, but modifies it in order to yield a general conclusion about language pertaining to abstract objects. If my Lewisian argument is sound, not only can we not know that abstract objects exist, we cannot even refer to or think about them. However, while the Lewisian argument strongly motivates nominalism, it also undermines (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How Do We Semantically Individuate Natural Numbers?†.Stefan Buijsman - forthcoming - Philosophia Mathematica.
    ABSTRACT How do non-experts single out numbers for reference? Linnebo has argued that they do so using a criterion of identity based on the ordinal properties of numerals. Neo-logicists, on the other hand, claim that cardinal properties are the basis of individuation, when they invoke Hume’s Principle. I discuss empirical data from cognitive science and linguistics to answer how non-experts individuate numbers better in practice. I use those findings to develop an alternative account that mixes ordinal and cardinal properties to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Are the Natural Numbers Fundamentally Ordinals?Bahram Assadian & Stefan Buijsman - 2018 - Philosophy and Phenomenological Research 99 (3):564-580.
    There are two ways of thinking about the natural numbers: as ordinal numbers or as cardinal numbers. It is, moreover, well-known that the cardinal numbers can be defined in terms of the ordinal numbers. Some philosophies of mathematics have taken this as a reason to hold the ordinal numbers as (metaphysically) fundamental. By discussing structuralism and neo-logicism we argue that one can empirically distinguish between accounts that endorse this fundamentality claim and those that do not. In particular, we argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Learning the Natural Numbers as a Child.Stefan Buijsman - 2017 - Noûs 53 (1):3-22.
    How do we get out knowledge of the natural numbers? Various philosophical accounts exist, but there has been comparatively little attention to psychological data on how the learning process actually takes place. I work through the psychological literature on number acquisition with the aim of characterising the acquisition stages in formal terms. In doing so, I argue that we need a combination of current neologicist accounts and accounts such as that of Parsons. In particular, I argue that we learn the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • To bridge Gödel’s gap.Eileen S. Nutting - 2016 - Philosophical Studies 173 (8):2133-2150.
    In “Mathematical Truth,” Paul Benacerraf raises an epistemic challenge for mathematical platonists. In this paper, I examine the assumptions that motivate Benacerraf’s original challenge, and use them to construct a new causal challenge for the epistemology of mathematics. This new challenge, which I call ‘Gödel’s Gap’, appeals to intuitive insights into mathematical knowledge. Though it is a causal challenge, it does not rely on any obviously objectionable constraints on knowledge. As a result, it is more compelling than the original challenge. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Giving Up on “the Rest of the Language".Adam C. Podlaskowski - 2015 - Acta Analytica 30 (3):293-304.
    In this essay, the tension that Benacerraf identifies for theories of mathematical truth is used as the vehicle for arguing against a particular desideratum for semantic theories. More specifically, I place in question the desideratum that a semantic theory, provided for some area of discourse, should run in parallel with the semantic theory holding for the rest of the language. The importance of this desideratum is also made clear by means of tracing out the subtle implications of its rejection.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Intuiting the infinite.Robin Jeshion - 2014 - Philosophical Studies 171 (2):327-349.
    This paper offers a defense of Charles Parsons’ appeal to mathematical intuition as a fundamental factor in solving Benacerraf’s problem for a non-eliminative structuralist version of Platonism. The literature is replete with challenges to his well-known argument that mathematical intuition justifies our knowledge of the infinitude of the natural numbers, in particular his demonstration that any member of a Hilbertian stroke string ω-sequence has a successor. On Parsons’ Kantian approach, this amounts to demonstrating that for an “arbitrary” or “vaguely represented” (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Multiple reductions revisited.Justin Clarke-Doane - 2008 - Philosophia Mathematica 16 (2):244-255.
    Paul Benacerraf's argument from multiple reductions consists of a general argument against realism about the natural numbers (the view that numbers are objects), and a limited argument against reductionism about them (the view that numbers are identical with prima facie distinct entities). There is a widely recognized and severe difficulty with the former argument, but no comparably recognized such difficulty with the latter. Even so, reductionism in mathematics continues to thrive. In this paper I develop a difficulty for Benacerraf's argument (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Building blocks for a cognitive science-led epistemology of arithmetic.Stefan Buijsman - 2021 - Philosophical Studies 179 (5):1-18.
    In recent years philosophers have used results from cognitive science to formulate epistemologies of arithmetic :5–18, 2001). Such epistemologies have, however, been criticised, e.g. by Azzouni, for interpreting the capacities found by cognitive science in an overly numerical way. I offer an alternative framework for the way these psychological processes can be combined, forming the basis for an epistemology for arithmetic. The resulting framework avoids assigning numerical content to the Approximate Number System and Object Tracking System, two systems that have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Abstractionism and Mathematical Singular Reference.Bahram Assadian - 2019 - Philosophia Mathematica 27 (2):177-198.
    ABSTRACT Is it possible to effect singular reference to mathematical objects in the abstractionist framework? I will argue that even if mathematical expressions pass the relevant syntactic and inferential tests to qualify as singular terms, that does not mean that their semantic function is to refer to a particular object. I will defend two arguments leading to this claim: the permutation argument for the referential indeterminacy of mathematical terms, and the argument from the semantic idleness of the terms introduced by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Is Incompatibilism Compatible with Fregeanism?Nils Kürbis - 2018 - European Journal of Analytic Philosophy 14 (2):27-46.
    This paper considers whether incompatibilism, the view that negation is to be explained in terms of a primitive notion of incompatibility, and Fregeanism, the view that arithmetical truths are analytic according to Frege’s definition of that term in §3 of Foundations of Arithmetic, can both be upheld simultaneously. Both views are attractive on their own right, in particular for a certain empiricist mind-set. They promise to account for two philosophical puzzling phenomena: the problem of negative truth and the problem of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Robert Lorne Victor Hale FRSE May 4, 1945 – December 12, 2017.Roy T. Cook & Stewart Shapiro - 2018 - Philosophia Mathematica 26 (2):266-274.
    Download  
     
    Export citation  
     
    Bookmark  
  • Awareness of Abstract Objects.Elijah Chudnoff - 2012 - Noûs 47 (4):706-726.
    Awareness is a two-place determinable relation some determinates of which are seeing, hearing, etc. Abstract objects are items such as universals and functions, which contrast with concrete objects such as solids and liquids. It is uncontroversial that we are sometimes aware of concrete objects. In this paper I explore the more controversial topic of awareness of abstract objects. I distinguish two questions. First, the Existence Question: are there any experiences that make their subjects aware of abstract objects? Second, the Grounding (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Epistemological objections to platonism.David Liggins - 2010 - Philosophy Compass 5 (1):67-77.
    Many philosophers posit abstract entities – where something is abstract if it is acausal and lacks spatio-temporal location. Theories, types, characteristics, meanings, values and responsibilities are all good candidates for abstractness. Such things raise an epistemological puzzle: if they are abstract, then how can we have any epistemic access to how they are? If they are invisible, intangible and never make anything happen, then how can we ever discover anything about them? In this article, I critically examine epistemological objections to (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Acquiring mathematical concepts: The viability of hypothesis testing.Stefan Buijsman - 2021 - Mind and Language 36 (1):48-61.
    Can concepts be acquired by testing hypotheses about these concepts? Fodor famously argued that this is not possible. Testing the correct hypothesis would require already possessing the concept. I argue that this does not generally hold for mathematical concepts. I discuss specific, empirically motivated, hypotheses for number concepts that can be tested without needing to possess the relevant number concepts. I also argue that one can test hypotheses about the identity conditions of other mathematical concepts, and then fix the application (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Making the Lightness of Being Bearable: Arithmetical Platonism, Fictional Realism and Cognitive Command.Bill Wringe - 2008 - Canadian Journal of Philosophy 38 (3):453-487.
    In this paper I argue against Divers and Miller's 'Lightness of Being' objection to Hale and Wright's neo-Fregean Platonism. According to the 'Lightness of Being' objection, the neo-Fregean Platonist makes existence too cheap: the same principles which allow her to argue that numbers exist also allow her to claim that fictional objects exist. I claim that this is no objection at all" the neo-Fregean Platonist should think that fictional characters exist. However, the pluralist approach to truth developed by WQright in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Concept of Finitism.Luca Incurvati - 2015 - Synthese 192 (8):2413-2436.
    At the most general level, the concept of finitism is typically characterized by saying that finitistic mathematics is that part of mathematics which does not appeal to completed infinite totalities and is endowed with some epistemological property that makes it secure or privileged. This paper argues that this characterization can in fact be sharpened in various ways, giving rise to different conceptions of finitism. The paper investigates these conceptions and shows that they sanction different portions of mathematics as finitistic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations