Switch to: References

Add citations

You must login to add citations.
  1. Philosophy of the Physical Sciences.Chris Smeenk & Hoefer Carl - 2014 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. New York, NY, USA: Oxford University Press.
    The authors survey some debates about the nature and structure of physical theories and about the connections between our physical theories and naturalized metaphysics. The discussion is organized around an “ideal view” of physical theories and criticisms that can be raised against it. This view includes controversial commitments regarding the best analysis of physical modalities and intertheory relations. The authors consider the case in favor of taking laws as the primary modal notion, discussing objections related to alleged violations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From Corpuscles to Elements: Chemical Ontologies from Van Helmont to Lavoisier.Marina Paola Banchetti-Robino - 2014 - In Eric Scerri & Lee McIntyre (eds.), Philosophy of Chemistry: Growth of a New Discipline. Springer. pp. 141-154.
    Download  
     
    Export citation  
     
    Bookmark  
  • On structural accounts of model-explanations.Martin King - 2016 - Synthese 193 (9):2761-2778.
    The focus in the literature on scientific explanation has shifted in recent years towards model-based approaches. In recent work, Alisa Bokulich has argued that idealization has a central role to play in explanation. Bokulich claims that certain highly-idealized, structural models can be explanatory, even though they are not considered explanatory by causal, mechanistic, or covering law accounts of explanation. This paper focuses on Bokulich’s account in order to make the more general claim that there are problems with maintaining that a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Maxwell, Helmholtz, and the unreasonable effectiveness of the method of physical analogy.Alisa Bokulich - 2015 - Studies in History and Philosophy of Science Part A 50:28-37.
    The fact that the same equations or mathematical models reappear in the descriptions of what are otherwise disparate physical systems can be seen as yet another manifestation of Wigner's “unreasonable effectiveness of mathematics.” James Clerk Maxwell famously exploited such formal similarities in what he called the “method of physical analogy.” Both Maxwell and Hermann von Helmholtz appealed to the physical analogies between electromagnetism and hydrodynamics in their development of these theories. I argue that a closer historical examination of the different (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Causal Theories of Explanation and the Challenge of Explanatory Disagreement.Lina Jansson - 2014 - Philosophy of Science 81 (3):332-348.
    When evaluating the success of causal theories of explanation the focus has typically been on the legitimacy of causal relations and on putative examples of explanations that we cannot capture in causal terms. Here I motivate the existence of a third kind of problem: the difficulty of accounting for explanatory disputes. Moreover, I argue that this problem remains even if the first two are settled and that it threatens to undercut one of the central motivations for causal accounts of explanation, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientific fictions as rules of inference.Mauricio Suárez - 2008 - In Mauricio Suárez (ed.), Fictions in Science: Philosophical Essays on Modeling and Idealization. New York: Routledge. pp. 158--178.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The Unity of Science.Jordi Cat - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On Heisenberg's Notion of a Closed Theory (2013).Francois-Igor Pris - manuscript
    I claim that Heisenberg’s notion of a closed theory and its analysis by Erhard Scheibe fit well with the philosophy of later Wittgenstein or its generalization. The notion of a closed theory corresponds to the notions of a form of life and rule/concept. I suggest the possibility of reconciling the views of Heisenberg, Dirac, and Bohr about inter-theoretical relations within a rational naturalistic pragmatism à la Wittgenstein and Robert Brandom’s analytic interpretation of Kantian synthetic unity of apperception. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Austere quantum mechanics as a reductive basis for chemistry.Hinne Hettema - 2012 - Foundations of Chemistry 15 (3):311-326.
    This paper analyses Richard Bader’s ‘operational’ view of quantum mechanics and the role it plays in the the explanation of chemistry. I argue that QTAIM can partially be reconstructed as an ‘austere’ form of quantum mechanics, which is in turn committed to an eliminative concept of reduction that stems from Kemeny and Oppenheim. As a reductive theory in this sense, the theory fails. I conclude that QTAIM has both a regulatory and constructive function in the theories of chemistry.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Three puzzles about Bohr's correspondence principle.Alisa Bokulich - unknown
    Niels Bohr’s “correspondence principle” is typically believed to be the requirement that in the limit of large quantum numbers (n→∞) there is a statistical agreement between the quantum and classical frequencies. A closer reading of Bohr’s writings on the correspondence principle, however, reveals that this interpretation is mistaken. Specifically, Bohr makes the following three puzzling claims: First, he claims that the correspondence principle applies to small quantum numbers as well as large (while the statistical agreement of frequencies is only for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How scientific models can explain.Alisa Bokulich - 2011 - Synthese 180 (1):33 - 45.
    Scientific models invariably involve some degree of idealization, abstraction, or nationalization of their target system. Nonetheless, I argue that there are circumstances under which such false models can offer genuine scientific explanations. After reviewing three different proposals in the literature for how models can explain, I shall introduce a more general account of what I call model explanations, which specify the conditions under which models can be counted as explanatory. I shall illustrate this new framework by applying it to the (...)
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • Can classical structures explain quantum phenomena?Alisa Bokulich - 2008 - British Journal for the Philosophy of Science 59 (2):217-235.
    In semiclassical mechanics one finds explanations of quantum phenomena that appeal to classical structures. These explanations are prima facie problematic insofar as the classical structures they appeal to do not exist. Here I defend the view that fictional structures can be genuinely explanatory by introducing a model-based account of scientific explanation. Applying this framework to the semiclassical phenomenon of wavefunction scarring, I argue that not only can the fictional classical trajectories explain certain aspects of this quantum phenomenon, but also that (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Is Bohr’s Correspondence Principle just Hankel’s Principle of Permanence?Iulian D. Toader - 2024 - Studies in History and Philosophy of Science 103 (C):137-145.
    No, but the paper argues that Bohr understood his correspondence principle, or at least an aspect of that principle expressed by the notion of rational generalization, as grounded in Hankel’s principle of permanence.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rules and Meaning in Quantum Mechanics.Iulian D. Toader - manuscript
    This book concerns the metasemantics of quantum mechanics (QM). Roughly, it pursues an investigation at an intersection of the philosophy of physics and the philosophy of semantics, and it offers a critical analysis of rival explanations of the semantic facts of standard QM. Two problems for such explanations are discussed: categoricity and permanence of rules. New results include 1) a reconstruction of Einstein's incompleteness argument, which concludes that a local, separable, and categorical QM cannot exist, 2) a reinterpretation of Bohr's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The puzzle of model-based explanation.N. Emrah Aydinonat - 2024 - In Tarja Knuuttila, Natalia Carrillo & Rami Koskinen (eds.), The Routledge Handbook of Philosophy of Scientific Modeling. New York, NY: Routledge.
    Among the many functions of models, explanation is central to the functioning and aims of science. However, the discussions surrounding modeling and explanation in philosophy have largely remained separate from each other. This chapter seeks to bridge the gap by focusing on the puzzle of model-based explanation, asking how different philosophical accounts answer the following question: if idealizations and fictions introduce falsehoods into models, how can idealized and fictional models provide true explanations? The chapter provides a selective and critical overview (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How Values Shape the Machine Learning Opacity Problem.Emily Sullivan - 2022 - In Insa Lawler, Kareem Khalifa & Elay Shech (eds.), Scientific Understanding and Representation: Modeling in the Physical Sciences. New York, NY: Routledge. pp. 306-322.
    One of the main worries with machine learning model opacity is that we cannot know enough about how the model works to fully understand the decisions they make. But how much is model opacity really a problem? This chapter argues that the problem of machine learning model opacity is entangled with non-epistemic values. The chapter considers three different stages of the machine learning modeling process that corresponds to understanding phenomena: (i) model acceptance and linking the model to the phenomenon, (ii) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Effective Field Theories: A Philosophical Appraisal.Dimitrios Athanasiou - unknown
    The word “effective” has become the standard label attached to scientific theories these days. An effective theory allows us to make accurate predictions about a physical system at a certain (energy, length) scale while being largely ignorant of the details at more fundamental levels. One does not need to know anything about the deeper, quantum structure of water molecules to describe the macroscopic behaviour of waves or water in a glass. Although effective descriptions so broadly construed have been part of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explaining Universality: Infinite Limit Systems in the Renormalization Group Method.Jingyi Wu - 2021 - Synthese (5-6):14897-14930.
    I analyze the role of infinite idealizations used in the renormalization group (RG hereafter) method in explaining universality across microscopically different physical systems in critical phenomena. I argue that despite the reference to infinite limit systems such as systems with infinite correlation lengths during the RG process, the key to explaining universality in critical phenomena need not involve infinite limit systems. I develop my argument by introducing what I regard as the explanatorily relevant property in RG explanations: linearization* property; I (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Taming the tyranny of scales: models and scale in the geosciences.Alisa Bokulich - 2021 - Synthese 199 (5-6):14167-14199.
    While the predominant focus of the philosophical literature on scientific modeling has been on single-scale models, most systems in nature exhibit complex multiscale behavior, requiring new modeling methods. This challenge of modeling phenomena across a vast range of spatial and temporal scales has been called the tyranny of scales problem. Drawing on research in the geosciences, I synthesize and analyze a number of strategies for taming this tyranny in the context of conceptual, physical, and mathematical modeling. This includes several strategies (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is the classical limit “singular”?Jer Steeger & Benjamin H. Feintzeig - 2021 - Studies in History and Philosophy of Science Part A 88 (C):263-279.
    We argue against claims that the classical ℏ → 0 limit is “singular” in a way that frustrates an eliminative reduction of classical to quantum physics. We show one precise sense in which quantum mechanics and scaling behavior can be used to recover classical mechanics exactly, without making prior reference to the classical theory. To do so, we use the tools of strict deformation quantization, which provides a rigorous way to capture the ℏ → 0 limit. We then use the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Models, structures, and the explanatory role of mathematics in empirical science.Mary Leng - 2021 - Synthese 199 (3-4):10415-10440.
    Are there genuine mathematical explanations of physical phenomena, and if so, how can mathematical theories, which are typically thought to concern abstract mathematical objects, explain contingent empirical matters? The answer, I argue, is in seeing an important range of mathematical explanations as structural explanations, where structural explanations explain a phenomenon by showing it to have been an inevitable consequence of the structural features instantiated in the physical system under consideration. Such explanations are best cast as deductive arguments which, by virtue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Understanding realism.Collin Rice - 2019 - Synthese 198 (5):4097-4121.
    Catherine Elgin has recently argued that a nonfactive conception of understanding is required to accommodate the epistemic successes of science that make essential use of idealizations and models. In this paper, I argue that the fact that our best scientific models and theories are pervasively inaccurate representations can be made compatible with a more nuanced form of scientific realism that I call Understanding Realism. According to this view, science aims at (and often achieves) factive scientific understanding of natural phenomena. I (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • What is the Point of Reduction in Science?Karen Crowther - 2020 - Erkenntnis 85 (6):1437-1460.
    The numerous and diverse roles of theory reduction in science have been insufficiently explored in the philosophy literature on reduction. Part of the reason for this has been a lack of attention paid to reduction2 (successional reduction)—although I here argue that this sense of reduction is closer to reduction1 (explanatory reduction) than is commonly recognised, and I use an account of reduction that is neutral between the two. This paper draws attention to the utility—and incredible versatility—of theory reduction. A non-exhaustive (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Decoherencia y relaciones interteóricas en el realismo cuántico.Nahuel Sznajderhaus - 2019 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 9:95--110.
    Download  
     
    Export citation  
     
    Bookmark  
  • The strong emergence of molecular structure.Vanessa A. Seifert - 2020 - European Journal for Philosophy of Science 10 (3):1-25.
    One of the most plausible and widely discussed examples of strong emergence is molecular structure. The only detailed account of it, which has been very influential, is due to Robin Hendry and is formulated in terms of downward causation. This paper explains Hendry’s account of the strong emergence of molecular structure and argues that it is coherent only if one assumes a diachronic reflexive notion of downward causation. However, in the context of this notion of downward causation, the strong emergence (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Explanations and candidate explanations in physics.Martin King - 2020 - European Journal for Philosophy of Science 10 (1):1-17.
    There has been a growing trend to include non-causal models in accounts of scientific explanation. A worry addressed in this paper is that without a higher threshold for explanation there are no tools for distinguishing between models that provide genuine explanations and those that provide merely potential explanations. To remedy this, a condition is introduced that extends a veridicality requirement to models that are empirically underdetermined, highly-idealised, or otherwise non-causal. This condition is applied to models of electroweak symmetry breaking beyond (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is the point of reduction in science?Karen Crowther - 2018 - Erkenntnis:1-24.
    The numerous and diverse roles of theory reduction in science have been insufficiently explored in the philosophy literature on reduction. Part of the reason for this has been a lack of attention paid to reduction2 (successional reduction)---although I here argue that this sense of reduction is closer to reduction1 (explanatory reduction) than is commonly recognised, and I use an account of reduction that is neutral between the two. This paper draws attention to the utility---and incredible versatility---of theory reduction. A non-exhaustive (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)On the Conceptuality Interpretation of Quantum and Relativity Theories.Diederik Aerts, Massimiliano Sassoli de Bianchi, Sandro Sozzo & Tomas Veloz - 2020 - Foundations of Science 25 (1):5-54.
    How can we explain the strange behavior of quantum and relativistic entities? Why do they behave in ways that defy our intuition about how physical entities should behave, considering our ordinary experience of the world around us? In this article, we address these questions by showing that the comportment of quantum and relativistic entities is not that strange after all, if we only consider what their nature might possibly be: not an objectual one, but a conceptual one. This not in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Models and Explanation.Alisa Bokulich - 2017 - In Magnani Lorenzo & Bertolotti Tommaso Wayne (eds.), Springer Handbook of Model-Based Science. Springer. pp. 103-118.
    Detailed examinations of scientific practice have revealed that the use of idealized models in the sciences is pervasive. These models play a central role in not only the investigation and prediction of phenomena, but in their received scientific explanations as well. This has led philosophers of science to begin revising the traditional philosophical accounts of scientific explanation in order to make sense of this practice. These new model-based accounts of scientific explanation, however, raise a number of key questions: Can the (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Searching for Noncausal Explanations in a Sea of Causes.Alisa Bokulich - 2018 - In Alexander Reutlinger & Juha Saatsi (eds.), Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations. Oxford, United Kingdom: Oxford University Press.
    In the spirit of explanatory pluralism, this chapter argues that causal and noncausal explanations of a phenomenon are compatible, each being useful for bringing out different sorts of insights. After reviewing a model-based account of scientific explanation, which can accommodate causal and noncausal explanations alike, an important core conception of noncausal explanation is identified. This noncausal form of model-based explanation is illustrated using the example of how Earth scientists in a subfield known as aeolian geomorphology are explaining the formation of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Philosophical Issues Concerning Phase Transitions and Anyons: Emergence, Reduction, and Explanatory Fictions.Elay Shech - 2019 - Erkenntnis 84 (3):585-615.
    Various claims regarding intertheoretic reduction, weak and strong notions of emergence, and explanatory fictions have been made in the context of first-order thermodynamic phase transitions. By appealing to John Norton’s recent distinction between approximation and idealization, I argue that the case study of anyons and fractional statistics, which has received little attention in the philosophy of science literature, is more hospitable to such claims. In doing so, I also identify three novel roles that explanatory fictions fulfill in science. Furthermore, I (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Inter-theory Relations in Quantum Gravity: Correspondence, Reduction and Emergence.Karen Crowther - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:74-85.
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using examples (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Fiction As a Vehicle for Truth: Moving Beyond the Ontic Conception.Alisa Bokulich - 2016 - The Monist 99 (3):260-279.
    Despite widespread evidence that fictional models play an explanatory role in science, resistance remains to the idea that fictions can explain. A central source of this resistance is a particular view about what explanations are, namely, the ontic conception of explanation. According to the ontic conception, explanations just are the concrete entities in the world. I argue this conception is ultimately incoherent and that even a weaker version of the ontic conception fails. Fictional models can succeed in offering genuine explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Explanatory Abstractions.Lina Jansson & Juha Saatsi - 2019 - British Journal for the Philosophy of Science 70 (3):817–844.
    A number of philosophers have recently suggested that some abstract, plausibly non-causal and/or mathematical, explanations explain in a way that is radically dif- ferent from the way causal explanation explain. Namely, while causal explanations explain by providing information about causal dependence, allegedly some abstract explanations explain in a way tied to the independence of the explanandum from the microdetails, or causal laws, for example. We oppose this recent trend to regard abstractions as explanatory in some sui generis way, and argue (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Idealization and Structural Explanation in Physics.Martin King - manuscript
    The focus in the literature on scientific explanation has shifted in recent years towards modelbased approaches. The idea that there are simple and true laws of nature has met with objections from philosophers such as Nancy Cartwright (1983) and Paul Teller (2001), and this has made a strictly Hempelian D-N style explanation largely irrelevant to the explanatory practices of science (Hempel & Oppenheim, 1948). Much of science does not involve subsuming particular events under laws of nature. It is increasingly recognized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Eschewing Entities: Outlining a Biology Based Form of Structural Realism.Steven French - 2013 - In Vassilios Karakostas & Dennis Dieks (eds.), EPSA11 Perspectives and Foundational Problems in Philosophy of Science. Cham: Springer. pp. 371--381.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Philosophical Views of Werner Heisenberg and His Notion of a Closed Theory from the Later Wittgenstein's Perspective.Francois-Igor Pris - 2014 - AL-Mukhatabat 9.
    I interpret the philosophical views of Werner Heisenberg as a pragmatism and non-metaphysical realism of a Wittgensteinian kind. The “closed theory” is a Wittgensteinian rule/concept.
    Download  
     
    Export citation  
     
    Bookmark  
  • Multi-model approaches to phylogenetics: Implications for idealization.Aja Watkins - 2021 - Studies in History and Philosophy of Science Part A 90 (C):285-297.
    Phylogenetic models traditionally represent the history of life as having a strictly-branching tree structure. However, it is becoming increasingly clear that the history of life is often not strictly-branching; lateral gene transfer, endosymbiosis, and hybridization, for example, can all produce lateral branching events. There is thus motivation to allow phylogenetic models to have a reticulate structure. One proposal involves the reconciliation of genealogical discordance. Briefly, this method uses patterns of disagreement – discordance – between trees of different genes to add (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Infinite idealizations in science: an introduction.Samuel C. Fletcher, Patricia Palacios, Laura Ruetsche & Elay Shech - 2019 - Synthese 196 (5):1657-1669.
    We offer a framework for organizing the literature regarding the debates revolving around infinite idealizations in science, and a short summary of the contributions to this special issue.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Infinitesimal idealization, easy road nominalism, and fractional quantum statistics.Elay Shech - 2019 - Synthese 196 (5):1963-1990.
    It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Explanatory fictions—for real?Samuel Schindler - 2014 - Synthese 191 (8):1741-1755.
    In this article I assess Alisa Bokulich’s idea that explanatory model fictions can be genuinely explanatory. I draw attention to a tension in her account between the claim that model fictions are explanatorily autonomous, and the demand that model fictions be justified in order for them to be genuinely explanatory. I also explore the consequences that arise from Bokulich’s use of Woodward’s account of counterfactual explanation and her abandonment of Woodward’s notion of an intervention. As it stands, Bokulich’s account must (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Dirac’s Book The Principles of Quantum Mechanics as an Alternative Way of Organizing a Theory.Antonino Drago - 2023 - Foundations of Science 28 (2):551-574.
    Authoritative appraisals have qualified this book as an “axiomatic” theory. However, given that its essential content is no more than an analogy, its theoretical organization cannot be axiomatic. Indeed, in the first edition Dirac declares that he had avoided an axiomatic presentation. Moreover, I show that the text aims to solve a basic problem (How quantum mechanics is similar to classical mechanics?). A previous paper analyzed all past theories of physics, chemistry and mathematics, presented by the respective authors non-axiomatically. Four (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards the Epistemology of the Non-trivial: Research Characteristics Connecting Quantum Mechanics and First-Person Inquiry.Urban Kordeš & Ema Demšar - 2019 - Foundations of Science 26 (1):187-216.
    The present article discusses shared epistemological characteristics of two distinct areas of research: the field of first-person inquiry and the field of quantum mechanics. We outline certain philosophical challenges that arise in each of the two lines of inquiry, and point towards the central similarity of their observational situation: the impossibility of disregarding the interrelatedness of the observed phenomena with the act of observation. We argue that this observational feature delineates a specific category of research that we call the non-trivial (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Idealizations and Understanding: Much Ado About Nothing?Emily Sullivan & Kareem Khalifa - 2019 - Australasian Journal of Philosophy 97 (4):673-689.
    Because idealizations frequently advance scientific understanding, many claim that falsehoods play an epistemic role. In this paper, we argue that these positions greatly overstate idealiza...
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov–Bohm effect.Shech Elay - 2018 - Synthese 195 (11):4839-4863.
    Two approaches to understanding the idealizations that arise in the Aharonov–Bohm effect are presented. It is argued that a common topological approach, which takes the non-simply connected electron configuration space to be an essential element in the explanation and understanding of the effect, is flawed. An alternative approach is outlined. Consequently, it is shown that the existence and uniqueness of self-adjoint extensions of symmetric operators in quantum mechanics have important implications for philosophical issues. Also, the alleged indispensable explanatory role of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Unscrambling the Quantum Omelette of Epistemic and Ontic Contextuality: Classical Contexts and Quantum Reality.Christian de Ronde - unknown
    In this paper we attempt to analyze the physical and philosophical meaning of quantum contextuality. In the first part we will argue that a general confusion within the literature comes from the improper "scrambling" of two different meanings of quantum contextuality. The first one is related to an epistemic interpretation of contextuality, introduced by Bohr, which stresses the incompatibility of quantum measurements. The second, is related to an ontic notion of contextuality, exposed through the Kochen-Specker theorem, which focuses on the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What is theoretical progress of science?Juha Saatsi - 2019 - Synthese 196 (2):611-631.
    The epistemic conception of scientific progress equates progress with accumulation of scientific knowledge. I argue that the epistemic conception fails to fully capture scientific progress: theoretical progress, in particular, can transcend scientific knowledge in important ways. Sometimes theoretical progress can be a matter of new theories ‘latching better onto unobservable reality’ in a way that need not be a matter of new knowledge. Recognising this further dimension of theoretical progress is particularly significant for understanding scientific realism, since realism is naturally (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Explaining simulated phenomena. A defense of the epistemic power of computer simulations.Juan M. Durán - 2013 - Dissertation, University of Stuttgart
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Correspondence Principle.Robert Rynasiewicz - unknown
    One finds, even in texts by distinguished physicists, diverse enunciations of the correspondence principle. Typical is that quantum mechanics should agree with classical mechanics in some appropriate limit. Most commonly, the limit specified is that of high quantum numbers, or of large masses and orbits of large dimensions. But sometimes it is specified as mean behavior when large numbers quanta are involved, or sometimes even as just the average of quantum mechanical variables. Sometimes, the principle is even taken as a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Universality is not universal: how much can we explain with falsehoods?: Collin Rice: Leveraging distortions: explanation, idealization, and universality in science. Cambridge MA: The MIT Press, 2021, 353 pp, $65.00 PB. [REVIEW]Martin King - 2022 - Metascience 31 (2):183-186.
    Download  
     
    Export citation  
     
    Bookmark