Switch to: References

Add citations

You must login to add citations.
  1. Scientific representation.Roman Frigg & James Nguyen - 2016 - Stanford Encyclopedia of Philosophy.
    Science provides us with representations of atoms, elementary particles, polymers, populations, genetic trees, economies, rational decisions, aeroplanes, earthquakes, forest fires, irrigation systems, and the world’s climate. It's through these representations that we learn about the world. This entry explores various different accounts of scientific representation, with a particular focus on how scientific models represent their target systems. As philosophers of science are increasingly acknowledging the importance, if not the primacy, of scientific models as representational units of science, it's important to (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Successful visual epistemic representation.Agnes Bolinska - 2016 - Studies in History and Philosophy of Science Part A 56 (C):153-160.
    In this paper, I characterize visual epistemic representations as concrete two- or three-dimensional tools for conveying information about aspects of their target systems or phenomena of interest. I outline two features of successful visual epistemic representation: that the vehicle of representation contain sufficiently accurate information about the phenomenon of interest for the user’s purpose, and that it convey this information to the user in a manner that makes it readily available to her. I argue that actual epistemic representation may involve (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The evolution of Wright’s (1932) adaptive field to contemporary interpretations and uses of fitness landscapes in the social sciences.Lasse Gerrits & Peter Marks - 2015 - Biology and Philosophy 30 (4):459-479.
    The concepts of adaptation and fitness have such an appeal that they have been used in other scientific domains, including the social sciences. One particular aspect of this theory transfer concerns the so-called fitness landscape models. At first sight, fitness landscapes visualize how an agent, of any kind, relates to its environment, how its position is conditional because of the mutual interaction with other agents, and the potential routes towards improved fitness. The allure of fitness landscapes is first and foremost (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Software Intensive Science.John Symons & Jack Horner - 2014 - Philosophy and Technology 27 (3):461-477.
    This paper argues that the difference between contemporary software intensive scientific practice and more traditional non-software intensive varieties results from the characteristically high conditionality of software. We explain why the path complexity of programs with high conditionality imposes limits on standard error correction techniques and why this matters. While it is possible, in general, to characterize the error distribution in inquiry that does not involve high conditionality, we cannot characterize the error distribution in inquiry that depends on software. Software intensive (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Epistemic expression in the determination of biomolecular structure.Agnes Bolinska - 2023 - Studies in History and Philosophy of Science Part A 100 (C):107-115.
    Scientific research is constrained by limited resources, so it is imperative that it be conducted efficiently. This paper introduces the notion of epistemic expression, a kind of representation that expedites the solution of research problems. Epistemic expressions are representations that (i) contain information in a way that enables more reliable information to place the most stringent constraints on possible solutions and (ii) make new information readily extractible by biasing the search through that space. I illustrate these conditions using historical and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inconsistent idealizations and inferentialism about scientific representation.Peter Tan - 2021 - Studies in History and Philosophy of Science Part A 89 (C):11-18.
    Inferentialists about scientific representation hold that an apparatus’s representing a target system consists in the apparatus allowing “surrogative inferences” about the target. I argue that a serious problem for inferentialism arises from the fact that many scientific theories and models contain internal inconsistencies. Inferentialism, left unamended, implies that inconsistent scientific models have unlimited representational power, since an inconsistency permits any conclusion to be inferred. I consider a number of ways that inferentialists can respond to this challenge before suggesting my own (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generative Models.Sim-Hui Tee - 2020 - Erkenntnis 88 (1):23-41.
    Generative models have been proposed as a new type of non-representational scientific models recently. A generative model is characterized with the capacity of producing new models on the basis of the existing one. The current accounts do not explain sufficiently the mechanism of the generative capacity of a generative model. I attempt to accomplish this task in this paper. I outline two antecedent accounts of generative models. I point out that both types of generative models function to generate new homogenous (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Semantic realism in the semantic conception of theories.Quentin Ruyant - 2020 - Synthese 198 (8):7965-7983.
    Semantic realism can be characterised as the idea that scientific theories are truth-bearers, and that they are true or false in virtue of the world. This notion is often assumed, but rarely discussed in the literature. I examine how it fares in the context of the semantic view of theories and in connection with the literature on scientific representation. Making sense of semantic realism requires specifying the conditions of application of theoretical models, even for models that are not actually used, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The New Fiction View of Models.Fiora Salis - 2021 - British Journal for the Philosophy of Science 72 (3):717-742.
    How do models represent reality? There are two conditions that scientific models must satisfy to be representations of real systems, the aboutness condition and the epistemic condition. In this article, I critically assess the two main fictionalist theories of models as representations, the indirect fiction view and the direct fiction view, with respect to these conditions. And I develop a novel proposal, what I call ‘the new fiction view of models’. On this view, models are akin to fictional stories; they (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Models in Science and Engineering: Imagining, Designing and Evaluating Representations.Michael Poznic - 2017 - Dissertation, Delft University of Technology
    The central question of this thesis is how one can learn about particular targets by using models of those targets. A widespread assumption is that models have to be representative models in order to foster knowledge about targets. Thus the thesis begins by examining the concept of representation from an epistemic point of view and supports an account of representation that does not distinguish between representation simpliciter and adequate representation. Representation, understood in the sense of a representative model, is regarded (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How models represent.James Nguyen - 2016 - Dissertation,
    Scientific models are important, if not the sole, units of science. This thesis addresses the following question: in virtue of what do scientific models represent their target systems? In Part i I motivate the question, and lay out some important desiderata that any successful answer must meet. This provides a novel conceptual framework in which to think about the question of scientific representation. I then argue against Callender and Cohen’s attempt to diffuse the question. In Part ii I investigate the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modeling Organs with Organs on Chips: Scientific Representation and Engineering Design as Modeling Relations.Michael Poznic - 2016 - Philosophy and Technology 29 (4):357-371.
    On the basis of a case study in bioengineering, this paper proposes a novel perspective on models in science and engineering. This is done with the help of two notions: representation and design. These two notions are interpreted as referring to modeling relations between vehicles and targets that differ in their respective directions of fit. The representation relation has a vehicle-to-target direction of fit and the design relation has a target-to-vehicle direction of fit. The case study of an organ on (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Deflationary representation, inference, and practice.Mauricio Suárez - 2015 - Studies in History and Philosophy of Science Part A 49 (C):36-47.
    This paper defends the deflationary character of two recent views regarding scientific representation, namely RIG Hughes’ DDI model and the inferential conception. It is first argued that these views’ deflationism is akin to the homonymous position in discussions regarding the nature of truth. There, we are invited to consider the platitudes that the predicate “true” obeys at the level of practice, disregarding any deeper, or more substantive, account of its nature. More generally, for any concept X, a deflationary approach is (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Problemas filosóficos para una teoría de la representación científica.Jairo Isaac Racines Correa - 2022 - Discusiones Filosóficas 23 (41):59-80.
    En oposición al escepticismo declarado por Callender y Cohen respecto de la existencia de algún problema en torno a la representación científica, el objetivo de este artículo es mostrar un conjunto de características peculiares de la representación científica, aunque no exclusivas, que una teoría satisfactoria debe explicar. Estas son: la predicación, la posibilidad de ser una representación incorrecta, el razonamiento subrogatorio y la independencia entre el contenido y la denotación. Además, se argumenta que una teoría satisfactoria de la representación debe (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Kind of Explanations Do We Get from Agent-Based Models of Scientific Inquiry?Dunja Šešelja - 2022 - In Tomas Marvan, Hanne Andersen, Hasok Chang, Benedikt Löwe & Ivo Pezlar (eds.), Proceedings of the 16th International Congress of Logic, Methodology and Philosophy of Science and Technology. London: College Publications.
    Agent-based modelling has become a well-established method in social epistemology and philosophy of science but the question of what kind of explanations these models provide remains largely open. This paper is dedicated to this issue. It starts by distinguishing between real-world phenomena, real-world possibilities, and logical possibilities as different kinds of targets which agent-based models can represent. I argue that models representing the former two kinds provide how-actually explanations or causal how-possibly explanations. In contrast, models that represent logical possibilities provide (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Factive inferentialism and the puzzle of model-based explanation.Philippe Verreault-Julien - 2021 - Synthese 199 (3-4):10039-10057.
    Highly idealized models may serve various epistemic functions, notably explanation, in virtue of representing the world. Inferentialism provides a prima facie compelling characterization of what constitutes the representation relation. In this paper, I argue that what I call factive inferentialism does not provide a satisfactory solution to the puzzle of model-based—factive—explanation. In particular, I show that making explanatory counterfactual inferences is not a sufficient guide for accurate representation, factivity, or realism. I conclude by calling for a more explicit specification of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific misrepresentation and guides to ontology: the need for representational code and contents.Elay Shech - 2015 - Synthese 192 (11):3463-3485.
    In this paper I show how certain requirements must be set on any tenable account of scientific representation, such as the requirement allowing for misrepresentation. I then continue to argue that two leading accounts of scientific representation— the inferential account and the interpretational account—are flawed for they do not satisfy such requirements. Through such criticism, and drawing on an analogy from non-scientific representation, I also sketch the outline of a superior account. In particular, I propose to take epistemic representations to (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • How do different interpretations work together in a single scientific explanatory project? A case study of the Olami-Feder-Christensen model of earthquakes.Hernán Bobadilla - 2024 - European Journal for Philosophy of Science 14 (3):1-29.
    Interpretation plays a central role in using scientific models to explain natural phenomena: Meaning must be bestowed upon a model in terms of what it is and what it represents to be used for model explanations. However, it remains unclear how capacious and complex interpretation in models can be, particularly when conducted by the same group of scientists in the context of one explanatory project. This paper sheds light upon this question by examining modelling and explanatory practices related to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Idealized Models as Selective Representations.Alfonso Anaya - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (2):189-213.
    This paper calls into question one fundamental claim at the basis of an alleged puzzle for veritistic accounts of the value of idealized models: the claim that idealized models cannot be veridical representations of the world. Catherine Elgin has argued that the value of idealized models can only be explained if we construe them as exemplars, which do not represent the world. I argue that Elgin’s proposal is problematic and cannot accommodate central cases of idealization. Nevertheless, there is value in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conceptual Modelling, Combinatorial Heuristics and Ars Inveniendi: An Epistemological History (Ch 1 & 2).Tom Ritchey - manuscript
    (1) An introduction to the principles of conceptual modelling, combinatorial heuristics and epistemological history; (2) the examination of a number of perennial epistemological-methodological schemata: conceptual spaces and blending theory; ars inveniendi and ars demonstrandi; the two modes of analysis and synthesis and their relationship to ars inveniendi; taxonomies and typologies as two fundamental epistemic structures; extended cognition, cognitio symbolica and model-based reasoning; (3) Plato’s notions of conceptual spaces, conceptual blending and hypothetical-analogical models (paradeigmata); (4) Ramon Llull’s concept analysis and combinatoric (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modelling and knowledge transfer in complexity science.Lena Zuchowski - 2019 - Studies in History and Philosophy of Science Part A 77:120-129.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How to use fitness landscape models for the analysis of collective decision-making: a case of theory-transfer and its limitations.Peter Marks, Lasse Gerrits & Johannes Marx - 2019 - Biology and Philosophy 34 (1):7.
    There is considerable correspondence between theories and models used in biology and the social sciences. One type of model that is in use in both biology and the social sciences is the fitness landscape model. The properties of the fitness landscape model have been applied rather freely in the social domain. This is partly due to the versatility of the model, but it is also due to the difficulties of transferring a model to another domain. We will demonstrate that in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • El problema de la representación: ¿razonamientos subrogantes válidos o sólidos?Hernán Lucas Accorinti - 2022 - Critica 54 (160):57-81.
    En el presente trabajo intentaré poner de manifiesto las debilidades de los argumentos dados por Contessa para sustentar, como fuente del representar, a los razonamientos subrogantes válidos por sobre los sólidos. En primer lugar, analizo ciertas ventajas epistémicas del criterio sustentado sobre los RS sólidos, evidenciando, consecuentemente, los límites del criterio estipulado por Contessa. En segundo lugar, muestro que los argumentos utilizados por Contessa para descartar el criterio instituido en los RS sólidos son deficientes, ya que, en el mejor de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Thin versus thick accounts of scientific representation.Michael Poznic - 2018 - Synthese 195 (8):3433-3451.
    This paper proposes a novel distinction between accounts of scientific representation: it distinguishes thin accounts from thick accounts. Thin accounts focus on the descriptive aspect of representation whereas thick accounts acknowledge the evaluative aspect of representation. Thin accounts focus on the question of what a representation as such is. Thick accounts start from the question of what an adequate representation is. In this paper, I give two arguments in favor of a thick account, the Argument of the Epistemic Aims of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations