Switch to: References

Citations of:

On the proof of Frege's theorem

In Adam Morton & Stephen P. Stich (eds.), Benacerraf and His Critics. Blackwell. pp. 143--59 (1996)

Add citations

You must login to add citations.
  1. Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Comparing Peano arithmetic, Basic Law V, and Hume’s Principle.Sean Walsh - 2012 - Annals of Pure and Applied Logic 163 (11):1679-1709.
    This paper presents new constructions of models of Hume's Principle and Basic Law V with restricted amounts of comprehension. The techniques used in these constructions are drawn from hyperarithmetic theory and the model theory of fields, and formalizing these techniques within various subsystems of second-order Peano arithmetic allows one to put upper and lower bounds on the interpretability strength of these theories and hence to compare these theories to the canonical subsystems of second-order arithmetic. The main results of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Ramified Frege Arithmetic.Richard G. Heck - 2011 - Journal of Philosophical Logic 40 (6):715-735.
    Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege’s definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Logic for Frege's Theorem.Richard Heck - 1999 - In Richard G. Heck (ed.), Frege’s Theorem: An Introduction. The Harvard Review of Philosophy.
    It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, say, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On finite hume.Fraser Macbride - 2000 - Philosophia Mathematica 8 (2):150-159.
    Neo-Fregeanism contends that knowledge of arithmetic may be acquired by second-order logical reflection upon Hume's principle. Heck argues that Hume's principle doesn't inform ordinary arithmetical reasoning and so knowledge derived from it cannot be genuinely arithmetical. To suppose otherwise, Heck claims, is to fail to comprehend the magnitude of Cantor's conceptual contribution to mathematics. Heck recommends that finite Hume's principle be employed instead to generate arithmetical knowledge. But a better understanding of Cantor's contribution is achieved if it is supposed that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Frege's Principle.Richard Heck - 1995 - In Jaakko Hintikka (ed.), From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics. Kluwer Academic Publishers.
    This paper explores the relationship between Hume's Prinicple and Basic Law V, investigating the question whether we really do need to suppose that, already in Die Grundlagen, Frege intended that HP should be justified by its derivation from Law V.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reasons and Causes in Psychiatry: Ideas from Donald Davidson’s Work.Elisabetta Lalumera - 2018 - In Annalisa Coliva, Paolo Leonardi & Sebastiano Moruzzi (eds.), Eva Picardi on Language, Analysis and History. Londra, Regno Unito: Palgrave. pp. 281-296.
    Though the divide between reason-based and causal-explanatory approaches in psychiatry and psychopathology is old and deeply rooted, current trends involving multi-factorial explanatory models and evidence-based approaches to interpersonal psychotherapy, show that it has already been implicitly bridged. These trends require a philosophical reconsideration of how reasons can be causes. This paper contributes to that trajectory by arguing that Donald Davidson’s classic paradigm of 1963 is still a valid option.
    Download  
     
    Export citation  
     
    Bookmark  
  • Is Hume’s Principle analytic?Eamon Darnell & Aaron Thomas-Bolduc - 2018 - Synthese 198 (1):169-185.
    The question of the analyticity of Hume’s Principle (HP) is central to the neo-logicist project. We take on this question with respect to Frege’s definition of analyticity, which entails that a sentence cannot be analytic if it can be consistently denied within the sphere of a special science. We show that HP can be denied within non-standard analysis and argue that if HP is taken to depend on Frege’s definition of number, it isn’t analytic, and if HP is taken to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage point of traditional philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege's theorem and his logicism.Hirotoshi Tabata - 2000 - History and Philosophy of Logic 21 (4):265-295.
    As is well known, Frege gave an explicit definition of number (belonging to some concept) in ?68 of his Die Grundlagen der Arithmetik.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Puzzle About Ontological Commitments.Philip A. Ebert - 2008 - Philosophia Mathematica 16 (2):209-226.
    This paper raises and then discusses a puzzle concerning the ontological commitments of mathematical principles. The main focus here is Hume's Principle—a statement that, embedded in second-order logic, allows for a deduction of the second-order Peano axioms. The puzzle aims to put pressure on so-called epistemic rejectionism, a position that rejects the analytic status of Hume's Principle. The upshot will be to elicit a new and very basic disagreement between epistemic rejectionism and the neo-Fregeans, defenders of the analytic status of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation