Switch to: References

Add citations

You must login to add citations.
  1. Physical Entity as Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (35):1-15.
    Quantum mechanics was reformulated as an information theory involving a generalized kind of information, namely quantum information, in the end of the last century. Quantum mechanics is the most fundamental physical theory referring to all claiming to be physical. Any physical entity turns out to be quantum information in the final analysis. A quantum bit is the unit of quantum information, and it is a generalization of the unit of classical information, a bit, as well as the quantum information itself (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • General Relativity and Quantum Gravity in Terms of Quantum Measure: A philosophical comment.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (17):1-37.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to be seen as informational in a generalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • God's Dice.Vasil Penchev - 2015 - In S. Oms, J. Martínez, M. García-Carpintero & J. Díez (eds.), Actas: VIII Conference of the Spanish Society for Logic, Methodology, and Philosophy of Sciences. Barcelona: Universitat de Barcelona. pp. 297-303.
    Einstein wrote his famous sentence "God does not play dice with the universe" in a letter to Max Born in 1920. All experiments have confirmed that quantum mechanics is neither wrong nor “incomplete”. One can says that God does play dice with the universe. Let quantum mechanics be granted as the rules generalizing all results of playing some imaginary God’s dice. If that is the case, one can ask how God’s dice should look like. God’s dice turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • From The Principle Of Least Action To The Conservation Of Quantum Information In Chemistry: Can One Generalize The Periodic Table?Vasil Penchev - 2019 - Chemistry: Bulgarian Journal of Science Education 28 (4):525-539.
    The success of a few theories in statistical thermodynamics can be correlated with their selectivity to reality. These are the theories of Boltzmann, Gibbs, end Einstein. The starting point is Carnot’s theory, which defines implicitly the general selection of reality relevant to thermodynamics. The three other theories share this selection, but specify it further in detail. Each of them separates a few main aspects within the scope of the implicit thermodynamic reality. Their success grounds on that selection. Those aspects can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum no-go theorems and consciousness.Danko Georgiev - 2013 - Axiomathes 23 (4):683-695.
    Our conscious minds exist in the Universe, therefore they should be identified with physical states that are subject to physical laws. In classical theories of mind, the mental states are identified with brain states that satisfy the deterministic laws of classical mechanics. This approach, however, leads to insurmountable paradoxes such as epiphenomenal minds and illusionary free will. Alternatively, one may identify mental states with quantum states realized within the brain and try to resolve the above paradoxes using the standard Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences · Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Indeterminism and Undecidability.Klaas Landsman - forthcoming - In Undecidability, Uncomputability, and Unpredictability. Cham: Springer Nature.
    The aim of this paper is to argue that the (alleged) indeterminism of quantum mechanics, claimed by adherents of the Copenhagen interpretation since Born (1926), can be proved from Chaitin's follow-up to Goedel's (first) incompleteness theorem. In comparison, Bell's (1964) theorem as well as the so-called free will theorem-originally due to Heywood and Redhead (1983)-left two loopholes for deterministic hidden variable theories, namely giving up either locality (more precisely: local contextuality, as in Bohmian mechanics) or free choice (i.e. uncorrelated measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A simplified genesis of quantum mechanics.Olivier Darrigol - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):151-166.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A simplified genesis of quantum mechanics.Olivier Darrigol - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):151-166.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Models and methodologies in current theoretical high-energy physics.James T. Cushing - 1982 - Synthese 50 (1):5 - 101.
    A case study of the development of quantum field theory and of S-matrix theory, from their inceptions to the present, is presented. The descriptions of science given by Kuhn and by Lakatos are compared and contrasted as they apply to this case study. The episodes of the developments of these theories are then considered as candidates for competing research programs in Lakatos' methodology of scientific research programs. Lakatos' scheme provides a reasonable overall description and a plausible assessment of the relative (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Bohm's theory: Common sense dismissed.James T. Cushing - 1993 - Studies in History and Philosophy of Science Part A 24 (5):815-842.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The peculiar notion of exchange forces—I: Origins in quantum mechanics, 1926–1928.Cathryn Carson - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (1):23-45.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The peculiar notion of exchange forces—I: Origins in quantum mechanics, 1926–1928.Cathryn Carson - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (1):23-45.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Space-Time in Quantum Theory.H. Capellmann - 2021 - Foundations of Physics 51 (2):1-34.
    Quantum Theory, similar to Relativity Theory, requires a new concept of space-time, imposed by a universal constant. While velocity of lightcnot being infinite calls for a redefinition of space-time on large and cosmological scales, quantization of action in terms of a finite, i.e. non vanishing, universal constanthrequires a redefinition of space-time on very small scales. Most importantly, the classical notion of “time”, as one common continuous time variable and nature evolving continuously “in time”, has to be replaced by an infinite (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Heisenberg and the wave–particle duality.Kristian Camilleri - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):298-315.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Spurious, Emergent Laws in Number Worlds.Cristian S. Calude & Karl Svozil - 2019 - Philosophies 4 (2):17.
    We study some aspects of the emergence of _lógos_ from _xáos_ on a basal model of the universe using methods and techniques from algorithmic information and Ramsey theories. Thereby an intrinsic and unusual mixture of meaningful and spurious, emerging laws surfaces. The spurious, emergent laws abound, they can be found almost everywhere. In accord with the ancient Greek theogony one could say that _lógos_, the Gods and the laws of the universe, originate from “the void,„ or from _xáos_, a picture (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematics as an Instigator of Scientific Revolutions.Stephen G. Brush - 2015 - Science & Education 24 (5-6):495-513.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Einstein's 1927 unpublished hidden-variable theory: Its background, context and significance.Darrin W. Belousek - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (4):437-461.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Einstein's 1927 unpublished hidden-variable theory: Its background, context and significance.Darrin W. Belousek - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (4):437-461.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Born's probabilistic interpretation: A case study of ‘concepts in flux’.Mara Beller - 1990 - Studies in History and Philosophy of Science Part A 21 (4):563-588.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Introduction.Jeffrey A. Barrett - 1995 - Topoi 14 (1):1-6.
    On Bohm's formulation of quantum mechanics particles always have determinate positions and follow continuous trajectories. Bohm's theory, however, requires a postulate that says that particles are initially distributed in a special way: particles are randomly distributed so that the probability of their positions being represented by a point in any regionR in configuration space is equal to the square of the wave-function integrated overR. If the distribution postulate were false, then the theory would generally fail to make the right statistical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Jordan's derivation of blackbody fluctuations.Guido Bacciagaluppi, Elise Crull & Owen J. E. Maroney - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 60:23-34.
    The celebrated Dreimännerarbeit by Born, Heisenberg and Jordan contains a matrix-mechanical derivation by Jordan of Planck’s formula for blackbody fluctuations. Jordan appears to have considered this to be one of his finest contributions to quantum theory, but the status of his derivation is puzzling. In our Dreimenschenarbeit, we show how to understand what Jordan was doing in the double context of a Boltzmannian approach to statistical mechanics and of the early ‘statistical interpretation’ of matrix mechanics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Physical Reality of Quantum Waves.Gennaro Auletta & Gino Tarozzi - 2004 - Foundations of Physics 34 (11):1675-1694.
    The main interpretations of the quantum-mechanical wave function are presented emphasizing how they can be divided into two ensembles: The ones that deny and the other ones that attribute a form of reality to quantum waves. It is also shown why these waves cannot be classical and must be submitted to the restriction of the complementarity principle. Applying the concept of smooth complementarity, it is shown that there can be no reason to attribute reality only to the events and not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Many-Measurements or Many-Worlds? A Dialogue.Diederik Aerts & Massimiliano Sassoli de Bianchi - 2015 - Foundations of Science 20 (4):399-427.
    Many advocates of the Everettian interpretation consider that theirs is the only approach to take quantum mechanics really seriously, and that this approach allows to deduce a fantastic scenario for our reality, one that consists of an infinite number of parallel worlds that branch out continuously. In this article, written in dialogue form, we suggest that quantum mechanics can be taken even more seriously, if the many-worlds view is replaced by a many-measurements view. This allows not only to derive the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Must hidden variables theories be contextual? Kochen & Specker meet von Neumann and Gleason.Pablo Acuña - 2021 - European Journal for Philosophy of Science 11 (2):1-30.
    It is a widespread belief that the Kochen-Specker theorem imposes a contextuality constraint on the ontology of beables in quantum hidden variables theories. On the other hand, after Bell’s influential critique, the importance of von Neumann’s wrongly called ‘impossibility proof’ has been severely questioned. However, Max Jammer, Jeffrey Bub and Dennis Dieks have proposed insightful reassessments of von Neumann’s theorem: what it really shows is that hidden variables theories cannot represent their beables by means of Hermitian operators in Hilbert space. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Математизирането на историята: число и битие.Vasil Penchev - 2013 - Sofia: BAS: ISSk (IPR).
    The book is a philosophical refection on the possibility of mathematical history. Are poosible models of historical phenomena so exact as those of physical ones? Mathematical models borrowed from quantum mechanics by the meditation of its interpretations are accomodated to history. The conjecture of many-variant history, alternative history, or counterfactual history is necessary for mathematical history. Conclusions about philosophy of history are inferred.
    Download  
     
    Export citation  
     
    Bookmark  
  • Философия на квантовата информация.Vasil Penchev - 2009 - Sofia: BAS: IPhR.
    The book is devoted to the contemporary stage of quantum mechanics – quantum information, and especially to its philosophical interpretation and comprehension: the first one of a series monographs about the philosophy of quantum information. The second will consider Be l l ’ s inequalities, their modified variants and similar to them relations. The beginning of quantum information was in the thirties of the last century. Its speed development has started over the last two decades. The main phenomenon is entanglement. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reason, causation and compatibility with the phenomena.Basil Evangelidis - 2020 - Wilmington, Delaware, USA: Vernon Press.
    'Reason, Causation and Compatibility with the Phenomena' strives to give answers to the philosophical problem of the interplay between realism, explanation and experience. This book is a compilation of essays that recollect significant conceptions of rival terms such as determinism and freedom, reason and appearance, power and knowledge. This title discusses the progress made in epistemology and natural philosophy, especially the steps that led from the ancient theory of atomism to the modern quantum theory, and from mathematization to analytic philosophy. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • EPR and the 'Passage' of Time.Friedel Weinert - 2013 - Philosophia Naturalis 50 (2):173-199.
    The essay revisits the puzzle of the ‘passage’ of time in relation to EPR-type measurements and asks what philosophical consequences can be drawn from them. Some argue that the lack of invariance of temporal order in the measurement of a space-like related EPR pair, under relativistic motion, casts serious doubts on the ‘reality’ of the lapse of time. Others argue thatcertain features of quantum mechanics establisha tensed theory of time – understood here as Possibilism or the growing block universe. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Potential of Using Quantum Theory to Build Models of Cognition.Zheng Wang, Jerome R. Busemeyer, Harald Atmanspacher & Emmanuel M. Pothos - 2013 - Topics in Cognitive Science 5 (4):672-688.
    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, a brief introduction to quantum probability (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The quantum-like approach to modeling classical rationality violations: an introduction.Franco Vaio - 2019 - Mind and Society 18 (1):105-123.
    Psychological empirical research has shown that human choice behavior often violates the assumptions of classical rational choice models. In the last few decades a new research field has emerged which aims to account for the observed choice behavior by resorting to the concepts and mathematical techniques developed in the realm of quantum physics, such as the “mental state vector” defined in a Hilbert space and the interference of quantum probability. This article is a short introduction to the quantum-like approach to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The emancipation of chemistry.Gerald F. Thomas - 2011 - Foundations of Chemistry 14 (2):109-155.
    In his classic work The Mind and its Place in Nature published in 1925 at the height of the development of quantum mechanics but several years after the chemists Lewis and Langmuir had already laid the foundations of the modern theory of valence with the introduction of the covalent bond, the analytic philosopher C. D. Broad argued for the emancipation of chemistry from the crass physicalism that led physicists then and later—with support from a rabblement of philosophers who knew as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Emergence of classical trajectories in quantum systems: the cloud chamber problem in the analysis of Mott (1929).Alessandro Teta & Rodolfo Figari - 2013 - Archive for History of Exact Sciences 67 (2):215-234.
    We analyze the paper “The wave mechanics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-ray tracks” Mott (Proc R Soc Lond A 126:79–84, 1929), published in 1929 by N. F. Mott. In particular, we discuss the theoretical context in which the paper appeared and give a detailed account of the approach used by the author and the main result attained. Moreover, we comment on the relevance of the work not only as far as foundations of Quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum hocus-pocus.Karl Svozil - 2016 - Ethics in Science and Environmental Politics 16 (1):25-30.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards a Constructive Foundation of Quantum Mechanics.Walter Smilga - 2017 - Foundations of Physics 47 (1):149-159.
    I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein’s historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, whose degree of freedom in space–time has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • “Special” states in quantum measurement apparatus: Structural requirements for the recovery of standard probabilities. [REVIEW]L. S. Schulman - 1991 - Foundations of Physics 21 (8):931-945.
    In a recently proposed quantum measurement theory the definiteness of quantum measurements is achieved by means of “special” states. The recovery of the usual quantum probabilities is related to the relative abundance of particular classes of “special” states. In the present article we consider two-state discrimination, and model the apparatus modes that could provide the “special” states. We find that there are structural features which, if generally present in apparatus, will provide universal recovery of standard probabilities. These structural features relate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Zurek’s Derivation of the Born Rule.Maximilian Schlosshauer & Arthur Fine - 2005 - Foundations of Physics 35 (2):197-213.
    Recently, W. H. Zurek presented a novel derivation of the Born rule based on a mechanism termed environment-assisted invariance, or “envariance” [W. H. Zurek, Phys. Rev. Lett. 90(2), 120404 (2003)]. We review this approach and identify fundamental assumptions that have implicitly entered into it, emphasizing issues that any such derivation is likely to face.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The δ-Quantum Machine, the k-Model, and the Non-ordinary Spatiality of Quantum Entities.Massimiliano Sassoli de Bianchi - 2013 - Foundations of Science 18 (1):11-41.
    The purpose of this article is threefold. Firstly, it aims to present, in an educational and non-technical fashion, the main ideas at the basis of Aerts’ creation-discovery view and hidden measurement approach : a fundamental explanatory framework whose importance, in this author’s view, has been seriously underappreciated by the physics community, despite its success in clarifying many conceptual challenges of quantum physics. Secondly, it aims to introduce a new quantum machine—that we call the δ quantum machine —which is able to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Constructivism and Realism in Boltzmann’s Thermodynamics’ Atomism.Luiz Pinguelli Rosa, Elaine Andrade, Paulo Picciani & Jean Faber - 2020 - Foundations of Physics 50 (11):1270-1293.
    Ludwig Boltzmann is one of the foremost responsible for the development of modern atomism in thermodynamics. His proposition was revolutionary not only because it brought a new vision for Thermodynamics, merging a statistical approach with Newtonian physics, but also because he produced an entirely new perspective on the way of thinking about and describing physical phenomena. Boltzmann dared to flirt with constructivism and realism simultaneously, by hypothesizing the reality of atoms and claiming an inherent probabilistic nature related to many particles (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Schrödinger and the interpretation of quantum mechanics.Fritz Rohrlich - 1987 - Foundations of Physics 17 (12):1205-1220.
    On the occasion of the centennial of his birth, Schrödinger's life and views are sketched and his critique of the interpretation of quantum mechanics accepted at his time is examined. His own interpretation, which he had to abandon after a short time, provides a prime example of the way in which the tentative meaning of central theoretical terms in a new and revolutionary theory often fails. Schrödinger's strong philosophical convictions have played a key role in his refusal to break with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific discovery: Between incommensurability of paradigms and historical continuity. [REVIEW]Alberta Rebaglia - 1999 - Foundations of Science 4 (3):337-355.
    Discoveries in physics imply two elements. The firstone is the belief that formal tools, already foundedin the framework of existing mathematical theories,may offer the solution to a puzzling anomaly. Thesecond one is the ability to assign a physical meaningto the adopted formalism, and to consider all itstheoretical implications.Discussing an historical case where the adoption of aparticular formalism represents the real motor of thecreative intuition, we mean to delineate scientificdiscovery both as a discontinuous change with respectto previous achievements and as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Character of Quantum Law: Complementarity, Entanglement, and Information.Arkady Plotnitsky - 2017 - Foundations of Physics 47 (8):1115-1154.
    This article considers the relationships between the character of physical law in quantum theory and Bohr’s concept of complementarity, under the assumption of the unrepresentable and possibly inconceivable nature of quantum objects and processes, an assumption that may be seen as the most radical departure from realism currently available. Complementarity, the article argues, is a reflection of the fact that, as against classical physics or relativity, the behavior of quantum objects of the same type, say, all electrons, is not governed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why Quantum Measurements Yield Single Values.H. S. Perlman - 2021 - Foundations of Physics 51 (1):1-6.
    It is shown that the Born Rule probabilities, i.e. the squares of the moduli of the coefficients in a pure state superposition, refer to mutually exclusive events consequent on measurement. It is also shown that the eigenstates in a pure state superposition are not mutually exclusive events. If the Born Rule is to be retained as the fundamental interpretative postulate of quantum mechanics then it follows, firstly, that the probabilities necessarily refer not to the eigenstates but to the eigenvalues to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The dissipative approach to quantum field theory: conceptual foundations and ontological implications.Andrea Oldofredi & Hans Christian Öttinger - 2020 - European Journal for Philosophy of Science 11 (1):1-36.
    Many attempts have been made to provide Quantum Field Theory with conceptually clear and mathematically rigorous foundations; remarkable examples are the Bohmian and the algebraic perspectives respectively. In this essay we introduce the dissipative approach to QFT, a new alternative formulation of the theory explaining the phenomena of particle creation and annihilation starting from nonequilibrium thermodynamics. It is shown that DQFT presents a rigorous mathematical structure, and a clear particle ontology, taking the best from the mentioned perspectives. Finally, after the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Flea on Schrödinger's Cat.P. N. & Robin Reuvers - 2013 - Foundations of Physics 43 (3):373-407.
    We propose a technical reformulation of the measurement problem of quantum mechanics, which is based on the postulate that the final state of a measurement is classical; this accords with experimental practice as well as with Bohr’s views. Unlike the usual formulation (in which the post-measurement state is a unit vector in Hilbert space), our version actually opens the possibility of admitting a purely technical solution within the confines of conventional quantum theory (as opposed to solutions that either modify this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mec'nica Qu'ntica e Livre Arbítrio: Cinco questões-fundamentais.José Manuel Muñoz - 2015 - Principia: An International Journal of Epistemology 19 (1):65-92.
    Download  
     
    Export citation  
     
    Bookmark  
  • The equivalence myth of quantum mechanics —Part I.F. A. Muller - 1997 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 28 (1):35-61.
    The author endeavours to show two things: first, that Schrödingers (and Eckarts) demonstration in March (September) 1926 of the equivalence of matrix mechanics, as created by Heisenberg, Born, Jordan and Dirac in 1925, and wave mechanics, as created by Schrödinger in 1926, is not foolproof; and second, that it could not have been foolproof, because at the time matrix mechanics and wave mechanics were neither mathematically nor empirically equivalent. That they were is the Equivalence Myth. In order to make the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The equivalence myth of quantum mechanics—part II.F. A. Muller - 1997 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 28 (2):219-247.
    The author endeavours to show two things: first, that Schrödingers (and Eckarts) demonstration in March (September) 1926 of the equivalence of matrix mechanics, as created by Heisenberg, Born, Jordan and Dirac in 1925, and wave mechanics, as created by Schrödinger in 1926, is not foolproof; and second, that it could not have been foolproof, because at the time matrix mechanics and wave mechanics were neither mathematically nor empirically equivalent. That they were is the Equivalence Myth. In order to make the (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Inherent Properties and Statistics with Individual Particles in Quantum Mechanics.Matteo Morganti - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):223-231.
    This paper puts forward the hypothesis that the distinctive features of quantum statistics are exclusively determined by the nature of the properties it describes. In particular, all statistically relevant properties of identical quantum particles in many-particle systems are conjectured to be irreducible, ‘inherent’ properties only belonging to the whole system. This allows one to explain quantum statistics without endorsing the ‘Received View’ that particles are non-individuals, or postulating that quantum systems obey peculiar probability distributions, or assuming that there are primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations