Switch to: References

Add citations

You must login to add citations.
  1. Katětov Order on Mad Families.Osvaldo Guzmán - 2024 - Journal of Symbolic Logic 89 (2):794-828.
    We continue with the study of the Katětov order on MAD families. We prove that Katětov maximal MAD families exist under $\mathfrak {b=c}$ and that there are no Katětov-top MAD families assuming $\mathfrak {s\leq b}.$ This improves previously known results from the literature. We also answer a problem form Arciga, Hrušák, and Martínez regarding Katětov maximal MAD families.
    Download  
     
    Export citation  
     
    Bookmark  
  • Convergent sequences in topological groups.Michael Hrušák & Alexander Shibakov - 2021 - Annals of Pure and Applied Logic 172 (5):102910.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Co-analytic mad families and definable wellorders.Vera Fischer, Sy David Friedman & Yurii Khomskii - 2013 - Archive for Mathematical Logic 52 (7-8):809-822.
    We show that the existence of a ${\Pi^1_1}$ -definable mad family is consistent with the existence of a ${\Delta^{1}_{3}}$ -definable well-order of the reals and ${\mathfrak{b}=\mathfrak{c}=\aleph_3}$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Almost disjoint families and diagonalizations of length continuum.Dilip Raghavan - 2010 - Bulletin of Symbolic Logic 16 (2):240 - 260.
    We present a survey of some results and problems concerning constructions which require a diagonalization of length continuum to be carried out, particularly constructions of almost disjoint families of various sorts. We emphasize the role of cardinal invariants of the continuum and their combinatorial characterizations in such constructions.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathias–Prikry and Laver type forcing; summable ideals, coideals, and +-selective filters.David Chodounský, Osvaldo Guzmán González & Michael Hrušák - 2016 - Archive for Mathematical Logic 55 (3-4):493-504.
    We study the Mathias–Prikry and the Laver type forcings associated with filters and coideals. We isolate a crucial combinatorial property of Mathias reals, and prove that Mathias–Prikry forcings with summable ideals are all mutually bi-embeddable. We show that Mathias forcing associated with the complement of an analytic ideal always adds a dominating real. We also characterize filters for which the associated Mathias–Prikry forcing does not add eventually different reals, and show that they are countably generated provided they are Borel. We (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Intersection numbers of families of ideals.M. Hrušák, C. A. Martínez-Ranero, U. A. Ramos-García & O. A. Téllez-Nieto - 2013 - Archive for Mathematical Logic 52 (3-4):403-417.
    We study the intersection number of families of tall ideals. We show that the intersection number of the class of analytic P-ideals is equal to the bounding number ${\mathfrak{b}}$ , the intersection number of the class of all meager ideals is equal to ${\mathfrak{h}}$ and the intersection number of the class of all F σ ideals is between ${\mathfrak{h}}$ and ${\mathfrak{b}}$ , consistently different from both.
    Download  
     
    Export citation  
     
    Bookmark  
  • Katětov order on Borel ideals.Michael Hrušák - 2017 - Archive for Mathematical Logic 56 (7-8):831-847.
    We study the Katětov order on Borel ideals. We prove two structural theorems, one for Borel ideals, the other for analytic P-ideals. We isolate nine important Borel ideals and study the Katětov order among them. We also present a list of fundamental open problems concerning the Katětov order on Borel ideals.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Ways of Destruction.Barnabás Farkas & Lyubomyr Zdomskyy - 2022 - Journal of Symbolic Logic 87 (3):938-966.
    We study the following natural strong variant of destroying Borel ideals: $\mathbb {P}$ $+$ -destroys $\mathcal {I}$ if $\mathbb {P}$ adds an $\mathcal {I}$ -positive set which has finite intersection with every $A\in \mathcal {I}\cap V$. Also, we discuss the associated variants $$ \begin{align*} \mathrm{non}^*(\mathcal{I},+)=&\min\big\{|\mathcal{Y}|:\mathcal{Y}\subseteq\mathcal{I}^+,\; \forall\;A\in\mathcal{I}\;\exists\;Y\in\mathcal{Y}\;|A\cap Y| \omega $ ; (4) we characterise when the Laver–Prikry, $\mathbb {L}(\mathcal {I}^*)$ -generic real $+$ -destroys $\mathcal {I}$, and in the case of P-ideals, when exactly $\mathbb {L}(\mathcal {I}^*)$ $+$ -destroys $\mathcal {I}$ ; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pseudo P-points and splitting number.Alan Dow & Saharon Shelah - 2019 - Archive for Mathematical Logic 58 (7-8):1005-1027.
    We construct a model in which the splitting number is large and every ultrafilter has a small subset with no pseudo-intersection.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathias–Prikry and Laver–Prikry type forcing.Michael Hrušák & Hiroaki Minami - 2014 - Annals of Pure and Applied Logic 165 (3):880-894.
    We study the Mathias–Prikry and Laver–Prikry forcings associated with filters on ω. We give a combinatorial characterization of Martinʼs number for these forcing notions and present a general scheme for analyzing preservation properties for them. In particular, we give a combinatorial characterization of those filters for which the Mathias–Prikry forcing does not add a dominating real.
    Download  
     
    Export citation  
     
    Bookmark   13 citations