Switch to: References

Add citations

You must login to add citations.
  1. Big Ideas: The Power of a Unifying Concept.Janet Folina - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (1):149-168.
    Philosophy of science in the twentieth century tends to emphasize either the logic of science (e.g., Popper and Hempel on explanation, confirmation, etc.) or its history/sociology (e.g., Kuhn on revolutions, holism, etc.). This dichotomy, however, is neither exhaustive nor exclusive. Questions regarding scientific understanding and mathematical explanation do not fit neatly inside either category, and addressing them has drawn from both logic and history. Additionally, interest in scientific and mathematical practice has led to work that falls between the two sides (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Formalism and Hilbert’s understanding of consistency problems.Michael Detlefsen - 2021 - Archive for Mathematical Logic 60 (5):529-546.
    Formalism in the philosophy of mathematics has taken a variety of forms and has been advocated for widely divergent reasons. In Sects. 1 and 2, I briefly introduce the major formalist doctrines of the late nineteenth and early twentieth centuries. These are what I call empirico-semantic formalism, game formalism and instrumental formalism. After describing these views, I note some basic points of similarity and difference between them. In the remainder of the paper, I turn my attention to Hilbert’s instrumental formalism. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof vs Provability: On Brouwer’s Time Problem.Palle Yourgrau - 2020 - History and Philosophy of Logic 41 (2):140-153.
    Is a mathematical theorem proved because provable, or provable because proved? If Brouwer’s intuitionism is accepted, we’re committed, it seems, to the latter, which is highly problematic. Or so I will argue. This and other consequences of Brouwer’s attempt to found mathematics on the intuition of a move of time have heretofore been insufficiently appreciated. Whereas the mathematical anomalies of intuitionism have received enormous attention, too little time, I’ll try to show, has been devoted to some of the temporal anomalies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Choice Sequences and the Continuum.Casper Storm Hansen - 2020 - Erkenntnis 87 (2):517-534.
    According to L.E.J. Brouwer, there is room for non-definable real numbers within the intuitionistic ontology of mental constructions. That room is allegedly provided by freely proceeding choice sequences, i.e., sequences created by repeated free choices of elements by a creating subject in a potentially infinite process. Through an analysis of the constitution of choice sequences, this paper argues against Brouwer’s claim.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionism, Transformational Generative Grammar and Mental Acts.David Gil - 1983 - Studies in History and Philosophy of Science Part A 14 (3):231.
    A remarkable philosophical affinity may be observed between the intuitionistic conception of mathematics and the transformational generative approach to the study of language: both disciplines profess a mentalistic ontology, both posit an idealized subject, and both insist on their autonomy with respect to other disciplines. This philosophical parallel is formalized in terms of a generalization of the intuitionistic notion of creative subject; resulting are the foundations of a unified theory of mental acts based on intuitionistic logic — capturing, inter alia, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • L.E.J. Brouwer's ‘Unreliability of the Logical Principles’: A New Translation, with an Introduction.Mark Van Atten & Göran Sundholm - 2017 - History and Philosophy of Logic 38 (1):24-47.
    We present a new English translation of L.E.J. Brouwer's paper ‘De onbetrouwbaarheid der logische principes’ of 1908, together with a philosophical and historical introduction. In this paper Brouwer for the first time objected to the idea that the Principle of the Excluded Middle is valid. We discuss the circumstances under which the manuscript was submitted and accepted, Brouwer's ideas on the principle of the excluded middle, its consistency and partial validity, and his argument against the possibility of absolutely undecidable propositions. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Against Against Intuitionism.Dirk Schlimm - 2005 - Synthese 147 (1):171-188.
    The main ideas behind Brouwer’s philosophy of Intuitionism are presented. Then some critical remarks against Intuitionism made by William Tait in “Against Intuitionism” [Journal of Philosophical Logic, 12, 173–195] are answered.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Kant, science, and human nature.Robert Hanna - 2006 - New York: Oxford University Press.
    Robert Hanna argues for the importance of Kant's theories of the epistemological, metaphysical, and practical foundations of the "exact sciences"--relegated to the dustbin of the history of philosophy for most of the 20th century. In doing so he makes a valuable contribution to one of the most active and fruitful areas in contemporary scholarship on Kant.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • On Logic in the Law: "Something, but not All".Susan Haack - 2007 - Ratio Juris 20 (1):1-31.
    In 1880, when Oliver Wendell Holmes (later to be a Justice of the U.S. Supreme Court) criticized the logical theology of law articulated by Christopher Columbus Langdell (the first Dean of Harvard Law School), neither Holmes nor Langdell was aware of the revolution in logic that had begun, the year before, with Frege's Begriffsschrift. But there is an important element of truth in Holmes's insistence that a legal system cannot be adequately understood as a system of axioms and corollaries; and (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Conceptions of truth in intuitionism.Panu Raatikainen - 2004 - History and Philosophy of Logic 25 (2):131--45.
    Intuitionism’s disagreement with classical logic is standardly based on its specific understanding of truth. But different intuitionists have actually explicated the notion of truth in fundamentally different ways. These are considered systematically and separately, and evaluated critically. It is argued that each account faces difficult problems. They all either have implausible consequences or are viciously circular.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Why Husserl should have been a strong revisionist in mathematics.Mark van Atten - 2002 - Husserl Studies 18 (1):1-18.
    Husserl repeatedly has claimed that (1) mathematics without a philosophical foundation is not a science but a mere technique; (2) philosophical considerations may lead to the rejection of parts of mathematical practice; but (3) they cannot lead to mathematical innovations. My thesis is that Husserl's third claim is wrong, by his own standards.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Shaping the Enemy: Foundational Labelling by L.E.J. Brouwer and A. Heyting.Miriam Franchella - 2018 - History and Philosophy of Logic 40 (2):152-181.
    The use of the three labels to denote the three foundational schools of the early twentieth century are now part of literature. Yet, neither their number nor the...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Undetachability of Propositional Content and Its Process of Construction: Another Aspect of Brouwer's Intuitionism.Hiroshi Kaneko - 2006 - Annals of the Japan Association for Philosophy of Science 14 (2):101-112.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The development of intuitionistic logic.Mark van Atten - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Realism.Susan Haack - 2004 - In Ilkka Niiniluoto, Matti Sintonen & Jan Woleński (eds.), Handbook of Epistemology. Dordrecht: Kluwer Academic. pp. 415--436.
    'Realism' is multiply ambiguous. The central concern of Part 1 of this paper is to distinguish several of its many senses -- four in which it refers to theses about the status of scientific theories, and five in which it refers to theses about the nature of truth or truth-bearers. Because 'Realism' has these several, largely independent, senses, the conventional wisdom that Tarski's theory of truth supports realism, and that the Meaning-Variance thesis undermines it, needs re-evaluation. The concern of the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Is intuitionism the epistemically serious foundation for mathematics?William J. Edgar - 1973 - Philosophia Mathematica (2):113-133.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The praxis of Alain Badiou.Paul Ashton, Adam Bartlett & Justin Clemens (eds.) - 2006 - Seddon, Melbourne, Australia: Re.Press.
    Following the publication of his magnum opus L’être et l’événement (Being and Event) in 1988, Alain Badiou has been acclaimed as one of France’s greatest living philosophers. Since then, he has released a dozen books, including Manifesto for Philosophy, Conditions, Metapolitics and Logiques des mondes (Logics of Worlds), many of which are now available in English translation. Badiou writes on an extraordinary array of topics, and his work has already had an impact upon studies in the history of philosophy, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The irreflexivity of Brouwer's philosophy.Mark van Atten - 2002 - Axiomathes 13 (1):65-77.
    I argue that Brouwer''s general philosophy cannot accountfor itself, and, a fortiori, cannot lend justification tomathematical principles derived from it. Thus it cannot groundintuitionism, the jobBrouwer had intended it to do. The strategy is to ask whetherthat philosophy actually allows for the kind of knowledge thatsuch an account of itself would amount to.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Realism.Susan Haack - 1987 - Synthese 73 (2):275 - 299.
    Realism is multiply ambiguous. The central concern of Part 1 of this paper is to distinguish several of its many senses — four (Theoretical Realism, Cumulative Realism, Progressive Realism and Optimistic Realism) in which it refers to theses about the status of scientific theories, and five (Minimal Realism, Ambitious Absolutism, Transcendentalism, Nidealism, Scholastic Realism) in which it refers to theses about the nature of truth or truth-bearers. Because Realism has these several, largely independent, senses, the conventional wisdom that Tarski's theory (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Did Bishop have a philosophy of mathematics?Helen Billinge - 2003 - Philosophia Mathematica 11 (2):176-194.
    When Bishop published Foundations of Constructive Analysis he showed that it was possible to do ordinary analysis within a constructive framework. Bishop's reasons for doing his mathematics constructively are explicitly philosophical. In this paper, I will expound, examine, and amplify his philosophical arguments for constructivism in mathematics. In the end, however, I argue that Bishop's philosophical comments cannot be rounded out into an adequate philosophy of constructive mathematics.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)The Law of the Subject: Alain Badiou, Luitzen Brouwer and the Kripkean Analyses of Forcing and the Heyting Calculus.Zachary Fraser - 2007 - Cosmos & History 2 (1):92-133.
    One of the central tasks of Badiou’s Being and Event is to elaborate a theory of the subject in the wake of an axiomatic identification of ontology with mathematics, or, to be precise, with classical Zermelo-Fraenkel set theory. The subject, for Badiou, is essentially a free project that originates in an event, and subtracts itself from both being qua being, as well as the linguistic and epistemic apparatuses that govern the situation. The subjective project is, itself, conceived as the temporal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A pragmatic theory of truth and ontology.Stewart Edward Granger - unknown
    At the heart of my pragmatic theory of truth and ontology is a view of the relation between language and reality which I term internal justification: a way of explaining how sentences may have truth-values which we cannot discover without invoking the need for the mystery of a correspondence relation. The epistemology upon which the theory depend~ is fallibilist and holistic ; places heavy reliance on modal idioms ; and leads to the conclusion that current versions of realism and anti-realism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How are Concepts of Infinity Acquired?Kazimierz Trzęsicki - 2015 - Studies in Logic, Grammar and Rhetoric 40 (1):179-217.
    Concepts of infinity have been subjects of dispute since antiquity. The main problems of this paper are: is the mind able to acquire a concept of infinity? and: how are concepts of infinity acquired? The aim of this paper is neither to say what the meanings of the word “infinity” are nor what infinity is and whether it exists. However, those questions will be mentioned, but only in necessary extent.
    Download  
     
    Export citation  
     
    Bookmark  
  • Spreads or choice sequences?H. C. M. De Swart - 1992 - History and Philosophy of Logic 13 (2):203-213.
    Intuitionistically. a set has to be given by a finite construction or by a construction-project generating the elements of the set in the course of time. Quantification is only meaningful if the range of each quantifier is a well-circumscribed set. Thinking upon the meaning of quantification, one is led to insights?in particular, the so-called continuity principles?which are surprising from a classical point of view. We believe that such considerations lie at the basis of Brouwer?s reconstruction of mathematics. The predicate ?α (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Brouwer, as never read by Husserl.Mark van Atten - 2003 - Synthese 137 (1-2):3-19.
    Even though Husserl and Brouwer have never discussed each other's work, ideas from Husserl have been used to justify Brouwer's intuitionistic logic. I claim that a Husserlian reading of Brouwer can also serve to justify the existence of choice sequences as objects of pure mathematics. An outline of such a reading is given, and some objections are discussed.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Proofs and refutations (IV).I. Lakatos - 1963 - British Journal for the Philosophy of Science 14 (56):296-342.
    Download  
     
    Export citation  
     
    Bookmark   210 citations  
  • Analysing choice sequences.A. S. Troelstra - 1983 - Journal of Philosophical Logic 12 (2):197 - 260.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • What is a Line?D. F. M. Strauss - 2014 - Axiomathes 24 (2):181-205.
    Since the discovery of incommensurability in ancient Greece, arithmeticism and geometricism constantly switched roles. After ninetieth century arithmeticism Frege eventually returned to the view that mathematics is really entirely geometry. Yet Poincaré, Brouwer, Weyl and Bernays are mathematicians opposed to the explication of the continuum purely in terms of the discrete. At the beginning of the twenty-first century ‘continuum theorists’ in France (Longo, Thom and others) believe that the continuum precedes the discrete. In addition the last 50 years witnessed the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The theory of empirical sequences.Carl J. Posy - 1977 - Journal of Philosophical Logic 6 (1):47 - 81.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Brouwer's constructivism.Carl J. Posy - 1974 - Synthese 27 (1-2):125 - 159.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the imaginative constructivist nature of design: a theoretical approach.Akin Osman Kazakci - unknown
    Most empirical accounts of design suggest that designing is an activity where objects and representations are progressively constructed. Despite this fact, whether design is a constructive process or not is not a question directly addressed in the current design research. By contrast, in other fields such as Mathematics or Psychology, the notion of constructivism is seen as a foundational issue. The present paper defends the point of view that forms of constructivism in design need to be identified and integrated as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • L. E. J. Brouwer and Karl Popper: Two Perspectives on Mathematics.Alexander John Naraniecki - 2015 - Cosmos and History 11 (1):239-255.
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of mathematics and computer science.Kazimierz Trzęsicki - 2010 - Studies in Logic, Grammar and Rhetoric 22 (35).
    Download  
     
    Export citation  
     
    Bookmark   1 citation