Switch to: References

Add citations

You must login to add citations.
  1. The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Five Formulations of the Quantum Measurement Problem in the Frame of the Standard Interpretation.Manuel Bächtold - 2008 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 39 (1):17-33.
    The aim of this paper is to give a systematic account of the so-called “measurement problem” in the frame of the standard interpretation of quantum mechanics. It is argued that there is not one but five distinct formulations of this problem. Each of them depends on what is assumed to be a “satisfactory” description of the measurement process in the frame of the standard interpretation. Moreover, the paper points out that each of these formulations refers not to a unique problem, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Interpreting Quantum Mechanics according to a Pragmatist Approach.Manuel Bächtold - 2008 - Foundations of Physics 38 (9):843-868.
    The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Modal Interpretations of Quantum Mechanics.Olimpia Lombardi & Dennis Dieks - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Dissipating the quantum measurement problem.Richard Healey - 1995 - Topoi 14 (1):55-65.
    The integration of recent work on decoherence into a so-called modal interpretation offers a promising new approach to the measurement problem in quantum mechanics. In this paper I explain and develop this approach in the context of the interactive interpretation presented in Healey (1989). I begin by questioning a number of assumptions which are standardly made in setting up the measurement problem, and I conclude that no satisfactory solution can afford to ignore the influence of the environment. Further, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Is there really no projection postulate in the modal interpretation?W. Michael Dickson - 1995 - British Journal for the Philosophy of Science 46 (2):197-218.
    Modal interpretations of quantum mechanics admit two kinds of state: physical states, which specify the values of observables on a system, and theoretical states, which specify a probability distribution over possible physical states. They appear to use this distinction to deny the projection postulate, claiming that collapse corresponds only to a change from discussing the theoretical state to discussing the physical state. I argue that modal interpretations should adopt a projection postulate at the level of the theoretical state. However, other (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Causality and the Modeling of the Measurement Process in Quantum Theory.Christian de Ronde - 2017 - Disputatio 9 (47):657-690.
    In this paper we provide a general account of the causal models which attempt to provide a solution to the famous measurement problem of Quantum Mechanics. We will argue that—leaving aside instrumentalism which restricts the physical meaning of QM to the algorithmic prediction of measurement outcomes—the many interpretations which can be found in the literature can be distinguished through the way they model the measurement process, either in terms of the efficient cause or in terms of the final cause. We (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Quantum Superpositions and Causality: On the Multiple Paths to the Measurement Result.Christian de Ronde - unknown
    The following analysis attempts to provide a general account of the multiple solutions given to the quantum measurement problem in terms of causality. Leaving aside instrumentalism which restricts its understanding of quantum mechanics to the algorithmic prediction of measurement outcomes, the many approaches which try to give an answer can be distinguished by their explanation based on the efficient cause —recovering in this way a classical physical description— or based on the final cause —which goes back to the hylomorphic tradition. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal interpretations of quantum mechanics.Michael Dickson - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal Interpretations of Quantum Mechanics and Relativity: A Reconsideration. [REVIEW]Joseph Berkovitz & Meir Hemmo - 2004 - Foundations of Physics 35 (3):373-397.
    Two of the main interpretative problems in quantum mechanics are the so-called measurement problem and the question of the compatibility of quantum mechanics with relativity theory. Modal interpretations of quantum mechanics were designed to solve both of these problems. They are no-collapse (typically) indeterministic interpretations of quantum mechanics that supplement the orthodox state description of physical systems by a set of possessed properties that is supposed to be rich enough to account for the classical-like behavior of macroscopic systems, but sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Partial Traces in Decoherence and in Interpretation: What Do Reduced States Refer to?Sebastian Fortin & Olimpia Lombardi - 2014 - Foundations of Physics 44 (4):426-446.
    The interpretation of the concept of reduced state is a subtle issue that has relevant consequences when the task is the interpretation of quantum mechanics itself. The aim of this paper is to argue that reduced states are not the quantum states of subsystems in the same sense as quantum states are states of the whole composite system. After clearly stating the problem, our argument is developed in three stages. First, we consider the phenomenon of environment-induced decoherence as an example (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The theoretical apparatus of semantic realism: A new language for classical and quantum physics. [REVIEW]Claudio Garola & Luigi Solombrino - 1996 - Foundations of Physics 26 (9):1121-1164.
    The standard interpretation of quantum physics (QP) and some recent generalizations of this theory rest on the adoption of a rerificationist theory of truth and meaning, while most proposals for modifying and interpreting QP in a “realistic” way attribute an ontological status to theoretical physical entities (ontological realism). Both terms of this dichotomy are criticizable, and many quantum paradoxes can be attributed to it. We discuss a new viewpoint in this paper (semantic realism, or briefly SR), which applies both to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • How to interpret quantum mechanics.Jeffrey Bub - 1994 - Erkenntnis 41 (2):253 - 273.
    I formulate the interpretation problem of quantum mechanics as the problem of identifying all possible maximal sublattices of quantum propositions that can be taken as simultaneously determinate, subject to certain constraints that allow the representation of quantum probabilities as measures over truth possibilities in the standard sense, and the representation of measurements in terms of the linear dynamics of the theory. The solution to this problem yields a modal interpretation that I show to be a generalized version of Bohm's hidden (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Modal interpretations and relativity.Wayne C. Myrvold - 2002 - Foundations of Physics 32 (11):1773-1784.
    A proof is given, at a greater level of generality than previous 'no-go' theorems, of the impossibility of formulating a modal interpretation that exhibits 'serious' Lorentz invariance at the fundamental level. Particular attention is given to modal interpretations of the type proposed by Bub.
    Download  
     
    Export citation  
     
    Bookmark   20 citations