Switch to: References

Add citations

You must login to add citations.
  1. Is superintelligence necessarily moral?Leonard Dung - forthcoming - Analysis.
    Numerous authors have expressed concern that advanced artificial intelligence (AI) poses an existential risk to humanity. These authors argue that we might build AI which is vastly intellectually superior to humans (a ‘superintelligence’), and which optimizes for goals that strike us as morally bad, or even irrational. Thus, this argument assumes that a superintelligence might have morally bad goals. However, according to some views, a superintelligence necessarily has morally adequate goals. This might be the case either because abilities for moral (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The argument for near-term human disempowerment through AI.Leonard Dung - 2024 - AI and Society:1-14.
    Many researchers and intellectuals warn about extreme risks from artificial intelligence. However, these warnings typically came without systematic arguments in support. This paper provides an argument that AI will lead to the permanent disempowerment of humanity, e.g. human extinction, by 2100. It rests on four substantive premises which it motivates and defends: first, the speed of advances in AI capability, as well as the capability level current systems have already reached, suggest that it is practically possible to build AI systems (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Defending explicability as a principle for the ethics of artificial intelligence in medicine.Jonathan Adams - 2023 - Medicine, Health Care and Philosophy 26 (4):615-623.
    The difficulty of explaining the outputs of artificial intelligence (AI) models and what has led to them is a notorious ethical problem wherever these technologies are applied, including in the medical domain, and one that has no obvious solution. This paper examines the proposal, made by Luciano Floridi and colleagues, to include a new ‘principle of explicability’ alongside the traditional four principles of bioethics that make up the theory of ‘principlism’. It specifically responds to a recent set of criticisms that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Explainable AI lacks regulative reasons: why AI and human decision‑making are not equally opaque.Uwe Peters - forthcoming - AI and Ethics.
    Many artificial intelligence (AI) systems currently used for decision-making are opaque, i.e., the internal factors that determine their decisions are not fully known to people due to the systems’ computational complexity. In response to this problem, several researchers have argued that human decision-making is equally opaque and since simplifying, reason-giving explanations (rather than exhaustive causal accounts) of a decision are typically viewed as sufficient in the human case, the same should hold for algorithmic decision-making. Here, I contend that this argument (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Two Dimensions of Opacity and the Deep Learning Predicament.Florian J. Boge - 2021 - Minds and Machines 32 (1):43-75.
    Deep neural networks have become increasingly successful in applications from biology to cosmology to social science. Trained DNNs, moreover, correspond to models that ideally allow the prediction of new phenomena. Building in part on the literature on ‘eXplainable AI’, I here argue that these models are instrumental in a sense that makes them non-explanatory, and that their automated generation is opaque in a unique way. This combination implies the possibility of an unprecedented gap between discovery and explanation: When unsupervised models (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Allure of Simplicity.Thomas Grote - 2023 - Philosophy of Medicine 4 (1).
    This paper develops an account of the opacity problem in medical machine learning (ML). Guided by pragmatist assumptions, I argue that opacity in ML models is problematic insofar as it potentially undermines the achievement of two key purposes: ensuring generalizability and optimizing clinician–machine decision-making. Three opacity amelioration strategies are examined, with explainable artificial intelligence (XAI) as the predominant approach, challenged by two revisionary strategies in the form of reliabilism and the interpretability by design. Comparing the three strategies, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark