- Reliability in Machine Learning.Thomas Grote, Konstantin Genin & Emily Sullivan - 2024 - Philosophy Compass 19 (5):e12974.details
|
|
On the Opacity of Deep Neural Networks.Anders Søgaard - 2023 - Canadian Journal of Philosophy:1-16.details
|
|
Machine learning in healthcare and the methodological priority of epistemology over ethics.Thomas Grote - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.details
|
|
The Explanatory Role of Machine Learning in Molecular Biology.Fridolin Gross - forthcoming - Erkenntnis:1-21.details
|
|
Linguistic Competence and New Empiricism in Philosophy and Science.Vanja Subotić - 2023 - Dissertation, University of Belgradedetails
|
|
Do ML models represent their targets?Emily Sullivan - forthcoming - Philosophy of Science.details
|
|
Models, Algorithms, and the Subjects of Transparency.Hajo Greif - 2022 - In Vincent C. Müller (ed.), Philosophy and Theory of Artificial Intelligence 2021. Berlin: Springer. pp. 27-37.details
|
|
Decentring the discoverer: how AI helps us rethink scientific discovery.Elinor Clark & Donal Khosrowi - 2022 - Synthese 200 (6):1-26.details
|
|
Philosophy of science at sea: Clarifying the interpretability of machine learning.Claus Beisbart & Tim Räz - 2022 - Philosophy Compass 17 (6):e12830.details
|
|
Explaining AI through mechanistic interpretability.Lena Kästner & Barnaby Crook - 2024 - European Journal for Philosophy of Science 14 (4):1-25.details
|
|
Beyond transparency and explainability: on the need for adequate and contextualized user guidelines for LLM use.Kristian González Barman, Nathan Wood & Pawel Pawlowski - 2024 - Ethics and Information Technology 26 (3):1-12.details
|
|
An Alternative to Cognitivism: Computational Phenomenology for Deep Learning.Pierre Beckmann, Guillaume Köstner & Inês Hipólito - 2023 - Minds and Machines 33 (3):397-427.details
|
|
Evidence, computation and AI: why evidence is not just in the head.Darrell P. Rowbottom, André Curtis-Trudel & William Peden - 2023 - Asian Journal of Philosophy 2 (1):1-17.details
|
|
Understanding models understanding language.Anders Søgaard - 2022 - Synthese 200 (6):1-16.details
|
|
AI as an Epistemic Technology.Ramón Alvarado - 2023 - Science and Engineering Ethics 29 (5):1-30.details
|
|
Scientific Inference with Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena.Timo Freiesleben, Gunnar König, Christoph Molnar & Álvaro Tejero-Cantero - 2024 - Minds and Machines 34 (3):1-39.details
|
|
Searching for Features with Artificial Neural Networks in Science: The Problem of Non-Uniqueness.Siyu Yao & Amit Hagar - 2024 - International Studies in the Philosophy of Science 37 (1):51-67.details
|
|
Predicting and explaining with machine learning models: Social science as a touchstone.Oliver Buchholz & Thomas Grote - 2023 - Studies in History and Philosophy of Science Part A 102 (C):60-69.details
|
|
Reliability and Interpretability in Science and Deep Learning.Luigi Scorzato - 2024 - Minds and Machines 34 (3):1-31.details
|
|
Understanding via exemplification in XAI: how explaining image classification benefits from exemplars.Sara Mann - forthcoming - AI and Society:1-16.details
|
|
(1 other version)Experts or Authorities? The Strange Case of the Presumed Epistemic Superiority of Artificial Intelligence Systems.Andrea Ferrario, Alessandro Facchini & Alberto Termine - 2024 - Minds and Machines 34 (3):1-27.details
|
|