Switch to: References

Add citations

You must login to add citations.
  1. On Deriving Nested Calculi for Intuitionistic Logics from Semantic Systems.Tim Lyon - 2013 - In Sergei Artemov & Anil Nerode (eds.), Logical Foundations of Computer Science (Lecture Notes in Computer Science 7734). Springer. pp. 177-194.
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic properties from its associated (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An ecumenical notion of entailment.Elaine Pimentel, Luiz Carlos Pereira & Valeria de Paiva - 2019 - Synthese 198 (S22):5391-5413.
    Much has been said about intuitionistic and classical logical systems since Gentzen’s seminal work. Recently, Prawitz and others have been discussing how to put together Gentzen’s systems for classical and intuitionistic logic in a single unified system. We call Prawitz’ proposal the Ecumenical System, following the terminology introduced by Pereira and Rodriguez. In this work we present an Ecumenical sequent calculus, as opposed to the original natural deduction version, and state some proof theoretical properties of the system. We reason that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Proof theory of epistemic logic of programs.Paolo Maffezioli & Alberto Naibo - 2014 - Logic and Logical Philosophy 23 (3):301--328.
    A combination of epistemic logic and dynamic logic of programs is presented. Although rich enough to formalize some simple game-theoretic scenarios, its axiomatization is problematic as it leads to the paradoxical conclusion that agents are omniscient. A cut-free labelled Gentzen-style proof system is then introduced where knowledge and action, as well as their combinations, are formulated as rules of inference, rather than axioms. This provides a logical framework for reasoning about games in a modular and systematic way, and to give (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Display to Labeled Proofs and Back Again for Tense Logics.Agata Ciabattoni, Tim Lyon, Revantha Ramanayake & Alwen Tiu - 2021 - ACM Transactions on Computational Logic 22 (3):1-31.
    We introduce translations between display calculus proofs and labeled calculus proofs in the context of tense logics. First, we show that every derivation in the display calculus for the minimal tense logic Kt extended with general path axioms can be effectively transformed into a derivation in the corresponding labeled calculus. Concerning the converse translation, we show that for Kt extended with path axioms, every derivation in the corresponding labeled calculus can be put into a special form that is translatable to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Correspondence between Nested Calculi and Semantic Systems for Intuitionistic Logics.Tim Lyon - 2021 - Journal of Logic and Computation 31 (1):213-265.
    This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from their associated labelled calculi, such as (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cut-free sequent calculi for some tense logics.Ryo Kashima - 1994 - Studia Logica 53 (1):119 - 135.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Dynamic non-commutative logic.Norihiro Kamide - 2010 - Journal of Logic, Language and Information 19 (1):33-51.
    A first-order dynamic non-commutative logic, which has no structural rules and has some program operators, is introduced as a Gentzen-type sequent calculus. Decidability, cut-elimination and completeness theorems are shown for DN or its fragments. DN is intended to represent not only program-based, resource-sensitive, ordered, sequence-based, but also hierarchical reasoning.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nested sequents for intermediate logics: the case of Gödel-Dummett logics.Tim S. Lyon - 2023 - Journal of Applied Non-Classical Logics 33 (2):121-164.
    We present nested sequent systems for propositional Gödel-Dummett logic and its first-order extensions with non-constant and constant domains, built atop nested calculi for intuitionistic logics. To obtain nested systems for these Gödel-Dummett logics, we introduce a new structural rule, called the linearity rule, which (bottom-up) operates by linearising branching structure in a given nested sequent. In addition, an interesting feature of our calculi is the inclusion of reachability rules, which are special logical rules that operate by propagating data and/or checking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Multicomponent proof-theoretic method for proving interpolation properties.Roman Kuznets - 2018 - Annals of Pure and Applied Logic 169 (12):1369-1418.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nested sequents for provability logic GLP: FIG. 1.Daniyar Shamkanov - 2015 - Logic Journal of the IGPL 23 (5):789-815.
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Deep sequent systems for modal logic.Kai Brünnler - 2009 - Archive for Mathematical Logic 48 (6):551-577.
    We see a systematic set of cut-free axiomatisations for all the basic normal modal logics formed by some combination the axioms d, t, b, 4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the literal sense. No semantic notions are used inside the proof systems, in particular there is no use of labels. All their rules are invertible and the rules cut, weakening and (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations