Switch to: References

Add citations

You must login to add citations.
  1. Current perspectives on the development of the philosophy of informatics.Paweł Polak - 2017 - Philosophical Problems in Science 63:77-100.
    This article is an overview of the philosophy of informatics with a special regard to some Polish philosophers. It juxtaposes the informationistic worldview with the long-prevailing mechanical conceptualization of nature before introducing the metaphysical perspective of the information revolution in sciences. The article shows also how ontic pancomputationalism – regarded as an update to structural realism – could enrich the philosophical research in some classical topics. The paper concludes with a discussion of the philosophy of Jan Salamucha, a philosopher from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Aspects of Theory-Ladenness in Data-Intensive Science.Wolfgang Pietsch - 2015 - Philosophy of Science 82 (5):905-916.
    Recent claims, mainly from computer scientists, concerning a largely automated and model-free data-intensive science have been countered by critical reactions from a number of philosophers of science. The debate suffers from a lack of detail in two respects, regarding the actual methods used in data-intensive science and the specific ways in which these methods presuppose theoretical assumptions. I examine two widely-used algorithms, classificatory trees and non-parametric regression, and argue that these are theory-laden in an external sense, regarding the framing of (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Constitution of Paleobiological Data.Marco Tamborini - unknown
    The objective of this dissertation is to write the first pages of the biography of paleobiological data. I will focus on i) the genesis of this kind of data as it emerged in German stratigraphy and paleontology between the mid 19th and the early 20th centuries and ii) how the conceptualization of the paleontological data was reformulated and taken as the starting point for studying the patterns of the diversity of life in deep time between the 1940s and 70s. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classificatory Theory in Data-intensive Science: The Case of Open Biomedical Ontologies.Sabina Leonelli - 2012 - International Studies in the Philosophy of Science 26 (1):47 - 65.
    Knowledge-making practices in biology are being strongly affected by the availability of data on an unprecedented scale, the insistence on systemic approaches and growing reliance on bioinformatics and digital infrastructures. What role does theory play within data-intensive science, and what does that tell us about scientific theories in general? To answer these questions, I focus on Open Biomedical Ontologies, digital classification tools that have become crucial to sharing results across research contexts in the biological and biomedical sciences, and argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The ethics of big data: current and foreseeable issues in biomedical contexts.Brent Daniel Mittelstadt & Luciano Floridi - 2016 - Science and Engineering Ethics 22 (2):303–341.
    The capacity to collect and analyse data is growing exponentially. Referred to as ‘Big Data’, this scientific, social and technological trend has helped create destabilising amounts of information, which can challenge accepted social and ethical norms. Big Data remains a fuzzy idea, emerging across social, scientific, and business contexts sometimes seemingly related only by the gigantic size of the datasets being considered. As is often the case with the cutting edge of scientific and technological progress, understanding of the ethical implications (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Beyond Generalized Darwinism. II. More Things in Heaven and Earth.Werner Callebaut - 2011 - Biological Theory 6 (4):351-365.
    This is the second of two articles in which I reflect on “generalized Darwinism” as currently discussed in evolutionary economics. In the companion article (Callebaut, Biol Theory 6. doi: 10.1007/s13752-013-0086-2, 2011, this issue) I approached evolutionary economics from the naturalistic perspectives of evolutionary epistemology and the philosophy of biology, contrasted evolutionary economists’ cautious generalizations of Darwinism with “imperialistic” proposals to unify the behavioral sciences, and discussed the continued resistance to biological ideas in the social sciences. Here I assess Generalized Darwinism (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Making Philosophy of Science Education Practical for Science Teachers.F. J. J. M. Janssen & B. van Berkel - 2015 - Science & Education 24 (3):229-258.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Scientific perspectivism in the phenomenological tradition.Philipp Berghofer - 2020 - European Journal for Philosophy of Science 10 (3):1-27.
    In current debates, many philosophers of science have sympathies for the project of introducing a new approach to the scientific realism debate that forges a middle way between traditional forms of scientific realism and anti-realism. One promising approach is perspectivism. Although different proponents of perspectivism differ in their respective characterizations of perspectivism, the common idea is that scientific knowledge is necessarily partial and incomplete. Perspectivism is a new position in current debates but it does have its forerunners. Figures that are (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Ancient genetics to ancient genomics: celebrity and credibility in data-driven practice.Elizabeth D. Jones - 2019 - Biology and Philosophy 34 (2):27.
    “Ancient DNA Research” is the practice of extracting, sequencing, and analyzing degraded DNA from dead organisms that are hundreds to thousands of years old. Today, many researchers are interested in adapting state-of-the-art molecular biological techniques and high-throughput sequencing technologies to optimize the recovery of DNA from fossils, then use it for studying evolutionary history. However, the recovery of DNA from fossils has also fueled the idea of resurrecting extinct species, especially as its emergence corresponded with the book and movie Jurassic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ethics and Epistemology in Big Data Research.Wendy Lipworth, Paul H. Mason, Ian Kerridge & John P. A. Ioannidis - 2017 - Journal of Bioethical Inquiry 14 (4):489-500.
    Biomedical innovation and translation are increasingly emphasizing research using “big data.” The hope is that big data methods will both speed up research and make its results more applicable to “real-world” patients and health services. While big data research has been embraced by scientists, politicians, industry, and the public, numerous ethical, organizational, and technical/methodological concerns have also been raised. With respect to technical and methodological concerns, there is a view that these will be resolved through sophisticated information technologies, predictive algorithms, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Comet Cometh: Evolving Developmental Systems.Johannes Jaeger, Manfred Laubichler & Werner Callebaut - 2015 - Biological Theory 10 (1):36-49.
    In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule’s prediction is based on a one-sided understanding of systems biology as a science (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Knowledge repositories. In digital knowledge we trust.Tsjalling Swierstra & Sophia Efstathiou - 2020 - Medicine, Health Care and Philosophy 23 (4):543-547.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Data science and molecular biology: prediction and mechanistic explanation.Ezequiel López-Rubio & Emanuele Ratti - 2021 - Synthese 198 (4):3131-3156.
    In the last few years, biologists and computer scientists have claimed that the introduction of data science techniques in molecular biology has changed the characteristics and the aims of typical outputs (i.e. models) of such a discipline. In this paper we will critically examine this claim. First, we identify the received view on models and their aims in molecular biology. Models in molecular biology are mechanistic and explanatory. Next, we identify the scope and aims of data science (machine learning in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Big Data – The New Science of Complexity.Wolfgang Pietsch - unknown
    Data-intensive techniques, now widely referred to as 'big data', allow for novel ways to address complexity in science. I assess their impact on the scientific method. First, big-data science is distinguished from other scientific uses of information technologies, in particular from computer simulations. Then, I sketch the complex and contextual nature of the laws established by data-intensive methods and relate them to a specific concept of causality, thereby dispelling the popular myth that big data is only concerned with correlations. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classificatory Theory in Biology.Sabina Leonelli - 2013 - Biological Theory 7 (4):338-345.
    Scientific classification has long been recognized as involving a specific style of reasoning and doing research, and as occasionally affecting the development of scientific theories. However, the role played by classificatory activities in generating theories has not been closely investigated within the philosophy of science. I argue that classificatory systems can themselves become a form of theory, which I call classificatory theory, when they come to formalize and express the scientific significance of the elements being classified. This is particularly evident (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Piecewise Aggregation of Philosophers’ and Biologists’ Perspectives: William C. Wimsatt: Re-Engineering Philosophy for Limited Beings: Piecewise Approximations to Reality; Harvard University Press, Cambridge, 2007, 472 pp., $65.50 hbk, ISBN 978-0-674-01545-6.Werner Callebaut, Martin Schlumpp, Julia Lang, Christoph Frischer, Stephan Handschuh, Miles MacLeod & Isabella Sarto-Jackson - 2016 - Biological Theory 11 (1):1-10.
    Re-Engineering Philosophy for Limited Beings is about new approaches to many of the big topics in philosophy of science today, but with a very different take. To begin with, we are urged to reject the received Cartesian-Laplacean myths: Descartes’ certainty and Laplace’s computational omniscience. Instead, Wimsatt re-engineers a philosophy for human beings with all their cognitive limitations. His approaches find their starting point in the actual practices of scientists themselves, which he strongly identifies with engineering practices as the source of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Molecular Mechanisms and Contexts of Physical Explanation.Giovanni Boniolo - 2013 - Biological Theory 7 (3):256-265.
    In this article, two issues regarding mechanisms are discussed. The first concerns the relationships between “mechanism description” and “mechanism explanation.” It is proposed that it is rather plausible to think of them as two distinct epistemic acts. The second deals with the different molecular biology explanatory contexts, and it is shown that some of them require physics and its laws.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Model Organism Databases and Algorithms: A Computing Mechanism for Cross-species Research.Sim-Hui Tee - forthcoming - Foundations of Science:1-26.
    Model organism databases are used extensively for knowledge retrieval and knowledge sharing among biologists. With the invention of genome sequencing and protein profiling technologies, large amount of molecular data provides practical insights into the molecular study of model organisms. The knowledge-intensive characteristic of model organism databases provides a reference point for the comparative study of other species. In this paper, I argue that algorithms could be used to facilitate cross-species research. I emphasize the epistemic significance of algorithms in the integration (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Beyond Generalized Darwinism. I. Evolutionary Economics from the Perspective of Naturalistic Philosophy of Biology.Werner Callebaut - 2011 - Biological Theory 6 (4):338-350.
    This is the first of two articles in which I reflect on “generalized Darwinism” as currently discussed in evolutionary economics. I approach evolutionary economics by the roundabouts of evolutionary epistemology and the philosophy of biology, and contrast evolutionary economists’ cautious generalizations of Darwinism with “imperialistic” proposals to unify the behavioral sciences. I then discuss the continued resistance to biological ideas in the social sciences, focusing on the issues of naturalism and teleology. In the companion article (Callebaut, Biol Theory 6. doi: (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Liberté, Egalité, Modularité: In Memory of Werner Callebaut (1952–2014).Gerd B. Müller - 2015 - Biological Theory 10 (1):1-4.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Naturalizing Theorizing: Beyond a Theory of Biological Theories. [REVIEW]Werner Callebaut - 2013 - Biological Theory 7 (4):413-429.
    Although “theory” has been the prevalent unit of analysis in the meta-study of science throughout most of the twentieth century, the concept remains elusive. I further explore the leitmotiv of several authors in this issue: that we should deal with theorizing (rather than theory) in biology as a cognitive activity that is to be investigated naturalistically. I first contrast how philosophers and biologists have tended to think about theory in the last century or so, and consider recent calls to upgrade (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations