Hume’s Principle states that the cardinal number of the concept F is identical with the cardinal number of G if and only if F and G can be put into one-to-one correspondence. The Schwartzkopff-Rosen Principle is a modification of HP in terms of metaphysical grounding: it states that if the number of F is identical with the number of G, then this identity is grounded by the fact that F and G can be paired one-to-one, 353–373, 2011, 362). HP is (...) central to the neo-logicist program in the philosophy of mathematics ; in this paper we submit that, even if the neo-logicists wish to venture into the metaphysics of grounding, they can avoid the SR Principle. In Section 1 we introduce neo-logicism. In Sections 2 and 3 we examine the SR Principle. We then formulate an account of arithmetical facts which does not rest on the SR Principle; we finally argue that the neo-logicists should avoid the SR Principle in favour of this alternative proposal. (shrink)