Switch to: References

Citations of:

Many Worlds, the Born Rule, and Self-Locating Uncertainty

In Daniele C. Struppa & Jeffrey M. Tollaksen (eds.), Quantum Theory: A Two-Time Success Story: Yakir Aharonov Festschrift. Milano: Springer. pp. 157-169 (2013)

Add citations

You must login to add citations.
  1. In defence of the self-location uncertainty account of probability in the many-worlds interpretation.Kelvin J. McQueen & Lev Vaidman - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):14-23.
    We defend the many-worlds interpretation of quantum mechanics against the objection that it cannot explain why measurement outcomes are predicted by the Born probability rule. We understand quantum probabilities in terms of an observer's self-location probabilities. We formulate a probability postulate for the MWI: the probability of self-location in a world with a given set of outcomes is the absolute square of that world's amplitude. We provide a proof of this postulate, which assumes the quantum formalism and two principles concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Privileged-Perspective Realism in the Quantum Multiverse.Nora Berenstain - 2020 - In David Glick, George Darby & Anna Marmodoro (eds.), The Foundation of Reality: Fundamentality, Space, and Time. Oxford: Oxford University Press.
    Privileged-perspective realism (PPR) is a version of metaphysical realism that takes certain irreducibly perspectival facts to be partly constitutive of reality. PPR asserts that there is a single metaphysically privileged standpoint from which these perspectival facts obtain. This chapter discusses several views that fall under the category of privileged-perspective realism. These include presentism, which is PPR about tensed facts, and non-multiverse interpretations of quantum mechanics, which the chapter argues, constitute PPR about world-indexed facts. Using the framework of the bird perspective (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Probability in Two Deterministic Universes.Mateus Araújo - 2019 - Foundations of Physics 49 (3):202-231.
    How can probabilities make sense in a deterministic many-worlds theory? We address two facets of this problem: why should rational agents assign subjective probabilities to branching events, and why should branching events happen with relative frequencies matching their objective probabilities. To address the first question, we generalise the Deutsch–Wallace theorem to a wide class of many-world theories, and show that the subjective probabilities are given by a norm that depends on the dynamics of the theory: the 2-norm in the usual (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The best of many worlds, or, is quantum decoherence the manifestation of a disposition?Florian J. Boge - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):135-144.
    In this paper I investigate whether the phenomenon of quantum decoherence, the vanishing of interference and detectable entanglement on quantum systems in virtue of interactions with the environment, can be understood as the manifestation of a disposition. I will highlight the advantages of this approach as a realist interpretation of the quantum formalism, and demonstrate how such an approach can benefit from advances in the metaphysics of dispositions. I will also confront some commonalities with and differences to the many worlds (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting the quantum mechanics of cosmology.David Wallace - forthcoming - In A. Ijjas & B. Loewer (eds.), Philosophy of Cosmology: an Introduction. Oxford University Press.
    Quantum theory plays an increasingly significant role in contemporary early-universe cosmology, most notably in the inflationary origins of the fluctuation spectrum of the microwave background radiation. I consider the two main strategies for interpreting standard quantum mechanics in the light of cosmology. I argue that the conceptual difficulties of the approaches based around an irreducible role for measurement - already very severe - become intolerable in a cosmological context, whereas the approach based around Everett's original idea of treating quantum systems (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics: Formal Aspects.André L. G. Mandolesi - 2018 - Foundations of Physics 48 (7):751-782.
    To solve the probability problem of the Many Worlds Interpretation of Quantum Mechanics, D. Wallace has presented a formal proof of the Born rule via decision theory, as proposed by D. Deutsch. The idea is to get subjective probabilities from rational decisions related to quantum measurements, showing the non-probabilistic parts of the quantum formalism, plus some rational constraints, ensure the squared modulus of quantum amplitudes play the role of such probabilities. We provide a new presentation of Wallace’s proof, reorganized to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some Remarks on the Mathematical Structure of the Multiverse.Alan McKenzie - 2016 - PhilSci-Archive, University of Pittsburgh, USA.
    The Copenhagen interpretation of quantum entanglement experiments is at best incomplete, since the intermediate state induced by collapse of the wave function apparently depends upon the inertial rest frame in which the experiment is observed. While Everett’s Many Worlds Interpretation avoids the issue of wave function collapse, it, too, is a casualty of the special theory of relativity. This requires all events in the universe, past, present and future, to be unique, as in the block-universe picture, which rules out Everett-style (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Bayesian View on the Dr. Evil Scenario.Feraz Azhar, Alan H. Guth & Mohammad Hossein Namjoo - forthcoming - Erkenntnis:1-12.
    In Defeating Dr. Evil with Self-Locating Belief, Adam Elga proposes and defends a principle of indifference for self-locating beliefs: if an individual is confident that his world contains more than one individual who is in a state subjectively indistinguishable from his own, then he should assign equal credences to the hypotheses that he is any one of these individuals. Through a sequence of thought experiments, Elga in effect claims that he can derive the credence function that should apply in such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Electromagnetism as Quantum Physics.Charles T. Sebens - 2019 - Foundations of Physics 49 (4):365-389.
    One can interpret the Dirac equation either as giving the dynamics for a classical field or a quantum wave function. Here I examine whether Maxwell’s equations, which are standardly interpreted as giving the dynamics for the classical electromagnetic field, can alternatively be interpreted as giving the dynamics for the photon’s quantum wave function. I explain why this quantum interpretation would only be viable if the electromagnetic field were sufficiently weak, then motivate a particular approach to introducing a wave function for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Killer collapse: empirically probing the philosophically unsatisfactory region of GRW.Charles T. Sebens - 2015 - Synthese 192 (8):2599-2615.
    GRW theory offers precise laws for the collapse of the wave function. These collapses are characterized by two new constants, \ and \ . Recent work has put experimental upper bounds on the collapse rate, \ . Lower bounds on \ have been more controversial since GRW begins to take on a many-worlds character for small values of \ . Here I examine GRW in this odd region of parameter space where collapse events act as natural disasters that destroy branches (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics II: Concepts and Axioms.André L. G. Mandolesi - 2019 - Foundations of Physics 49 (1):24-52.
    Having analyzed the formal aspects of Wallace’s proof of the Born rule, we now discuss the concepts and axioms upon which it is built. Justification for most axioms is shown to be problematic, and at times contradictory. Some of the problems are caused by ambiguities in the concepts used. We conclude the axioms are not reasonable enough to be taken as mandates of rationality in Everettian Quantum Mechanics. This invalidates the interpretation of Wallace’s result as meaning it would be rational (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation