Switch to: Citations

Add references

You must login to add references.
  1. What is dialectical philosophy of mathematics?Brendan Larvor - 2001 - Philosophia Mathematica 9 (2):212-229.
    The late Imre Lakatos once hoped to found a school of dialectical philosophy of mathematics. The aim of this paper is to ask what that might possibly mean. But Lakatos's philosophy has serious shortcomings. The paper elaborates a conception of dialectical philosophy of mathematics that repairs these defects and considers the work of three philosophers who in some measure fit the description: Yehuda Rav, Mary Leng and David Corfield.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   587 citations  
  • (2 other versions)Mathematical truth.Paul Benacerraf - 1973 - Journal of Philosophy 70 (19):661-679.
    Download  
     
    Export citation  
     
    Bookmark   703 citations  
  • Mathematics, ideas, and the physical real.Albert Lautman - 2011 - New York: Continuum. Edited by Simon B. Duffy.
    The first English collection of the work of Albert Lautman, a major figure in philosophy of mathematics and a key influence on Badiou and Deleuze.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Plato's Problem: An Introduction to Mathematical Platonism.Marco Panza & Andrea Sereni - 2013 - New York: Palgrave-Macmillan. Edited by Andrea Sereni & Marco Panza.
    What is mathematics about? And if it is about some sort of mathematical reality, how can we have access to it? This is the problem raised by Plato, which still today is the subject of lively philosophical disputes. This book traces the history of the problem, from its origins to its contemporary treatment. It discusses the answers given by Aristotle, Proclus and Kant, through Frege's and Russell's versions of logicism, Hilbert's formalism, Gödel's platonism, up to the the current debate on (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Towards a Philosophy of Real Mathematics.David Corfield - 2003 - Studia Logica 81 (2):285-289.
    In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically, and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of new ways to think philosophically about mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures are doing real mathematics, (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • Bolzano's Philosophy and the Emergence of Modern Mathematics.Paul Rusnock (ed.) - 2000 - Rodopi.
    Contents: Acknowledgements. Conventions. Preface. Biographical sketch. 1 Introduction. 2 The Contributions. 3 Early work in analysis. 4 The Theory of Science . 5. Later mathematical studies. A On Kantian Intuitions. B The Bolzano-Cauchy Theorem.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Knot Invariants in Vienna and Princeton during the 1920s: Epistemic Configurations of Mathematical Research.Moritz Epple - 2004 - Science in Context 17 (1-2):131-164.
    In 1926 and 1927, James W. Alexander and Kurt Reidemeister claimed to have made “the same” crucial breakthrough in a branch of modern topology which soon thereafter was called knot theory. A detailed comparison of the techniques and objects studied in these two roughly simultaneous episodes of mathematical research shows, however, that the two mathematicians worked in quite different mathematical traditions and that they drew on related, but distinctly different epistemic resources. These traditions and resources were local, not universal elements (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The twofold role of diagrams in Euclid’s plane geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Philosophical Perspectives on Mathematical Practice.Bart Van Kerkhove, Jean Paul Van Bendegem & Jonas De Vuyst (eds.) - 2010 - College Publications.
    It has been observed many times before that, as yet, there are no encompassing, integrated theories of mathematical practice available.To witness, as we currently do, a variety of schools in this field elaborating their philosophical frameworks, and trying to sort out their differences in the course of doing so, is also to be constantly reminded of the fact that a lot of epistemic aspects, extremely relevant to this task, remain dramatically underexamined. This volume wants to contribute to the stock of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Realistic rationalism. [REVIEW]Mark Eli Kalderon - 2000 - Philosophical Review 109 (3):456-459.
    Philosophy of mathematics is in an alienated state. While regarded by the profession as a serious and legitimate subdiscipline, a passing knowledge of its subject matter is considered something of a luxury—or at least not required of a conscientious philosopher the way a passing knowledge of logic is. Philosophy of mathematics is thus regarded with a benign neglect: best left to the experts, whose opinions should be deferred to, but mostly irrelevant to the central concerns of the working philosopher. Its (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Proofs, pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Knowledge and social imagery.David Bloor - 1976 - Chicago: University of Chicago Press.
    The first edition of this book profoundly challenged and divided students of philosophy, sociology, and the history of science when it was published in 1976. In this second edition, Bloor responds in a substantial new Afterword to the heated debates engendered by his book.
    Download  
     
    Export citation  
     
    Bookmark   458 citations  
  • Category theory and the foundations of mathematics: Philosophical excavations.Jean-Pierre Marquis - 1995 - Synthese 103 (3):421 - 447.
    The aim of this paper is to clarify the role of category theory in the foundations of mathematics. There is a good deal of confusion surrounding this issue. A standard philosophical strategy in the face of a situation of this kind is to draw various distinctions and in this way show that the confusion rests on divergent conceptions of what the foundations of mathematics ought to be. This is the strategy adopted in the present paper. It is divided into 5 (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mathematics without foundations.Hilary Putnam - 1967 - Journal of Philosophy 64 (1):5-22.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • A renaissance of empiricism in the recent philosophy of mathematics.Imre Lakatos - 1976 - British Journal for the Philosophy of Science 27 (3):201-223.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Ontology and mathematical practice.Jessica Carter - 2004 - Philosophia Mathematica 12 (3):244-267.
    In this paper I propose a position in the ontology of mathematics which is inspired mainly by a case study in the mathematical discipline if-theory. The main theses of this position are that mathematical objects are introduced by mathematicians and that after mathematical objects have been introduced, they exist as objectively accessible abstract objects.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • An enhanced argument for innate elementary geometric knowledge and its philosophical implications.Helen3 De Cruz - 2009 - In Bart Van Kerkhove (ed.), New Perspectives on Mathematical Practices: Essays in Philosophy and History of Mathematics. World Scientific.
    The idea that formal geometry derives from intuitive notions of space has appeared in many guises, most notably in Kant’s argument from geometry. Kant claimed that an a priori knowledge of spatial relationships both allows and constrains formal geometry: it serves as the actual source of our cognition of principles of geometry and as a basis for its further cultural development. The development of non-Euclidean geometries, however, seemed to definitely undermine the idea that there is some privileged relationship between our (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An Inquiry into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2014 - In Giorgio Venturi, Marco Panza & Gabriele Lolli (eds.), From Logic to Practice: Italian Studies in the Philosophy of Mathematics. Cham: Springer International Publishing. pp. 315-336.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The concept of “character” in Dirichlet’s theorem on primes in an arithmetic progression.Jeremy Avigad & Rebecca Morris - 2014 - Archive for History of Exact Sciences 68 (3):265-326.
    In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. We survey implicit and explicit uses ofDirichlet characters in presentations of Dirichlet’s proof in the nineteenth and early twentieth centuries, with an eye toward understanding some of the pragmatic pressures that shaped the evolution of modern mathematical method.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube.Hans-Jörg Rheinberger - 1997 - Stanford University Press.
    In this powerful work of conceptual and analytical originality, the author argues for the primacy of the material arrangements of the laboratory in the dynamics of modern molecular biology. In a post-Kuhnian move away from the hegemony of theory, he develops a new epistemology of experimentation in which research is treated as a process for producing epistemic things. A central concern of the book is the basic question of how novelty is generated in the empirical sciences. In addressing this question, (...)
    Download  
     
    Export citation  
     
    Bookmark   186 citations  
  • The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Visual Thinking in Mathematics: An Epistemological Study.Marcus Giaquinto - 2007 - Oxford, England: Oxford University Press.
    Marcus Giaquinto presents an investigation into the different kinds of visual thinking involved in mathematical thought, drawing on work in cognitive psychology, philosophy, and mathematics. He argues that mental images and physical diagrams are rarely just superfluous aids: they are often a means of discovery, understanding, and even proof.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Mathematical activity.M. Giaquinto - 2005 - In Paolo Mancosu, Klaus Frovin Jørgensen & S. A. Pedersen (eds.), Visualization, Explanation and Reasoning Styles in Mathematics. Springer. pp. 75-87.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Unreasonable Richness of Mathematics.Jean Paul Van Bendegem & Bart Van Kerkhove - 2004 - Journal of Cognition and Culture 4 (3-4):525-549.
    The paper gives an impression of the multi-dimensionality of mathematics as a human activity. This 'phenomenological' exercise is performed within an analytic framework that is both an expansion and a refinement of the one proposed by Kitcher. Such a particular tool enables one to retain an integrated picture while nevertheless welcoming an ample diversity of perspectives on mathematical practices, that is, from different disciplines, with different scopes, and at different levels. Its functioning is clarified by fitting in illustrations based on (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Philosophy of Mathematical Practice.Paolo Mancosu - 2009 - Studia Logica 92 (1):137-141.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Triangle Des Pensées.Alain Connes, André Lichnerowicz & Marcel P. Schützenberger - 2001 - Amer Mathematical Society.
    Our view of the world today is fundamentally influenced by twentieth century results in physics and mathematics. Here, three members of the French Academy of Sciences: Alain Connes, Andre Lichnerowicz, and Marcel Paul Schutzenberger, discuss the relations among mathematics, physics and philosophy, and other sciences.Written in the form of conversations among three brilliant scientists and deep thinkers, the book touches on, among others, the following questions: Is there a 'primordial truth' that exists beyond the realm of what is provable? More (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Conversations on Mind, Matter, and Mathematics.Jean-Pierre Changeux & Alain Connes - 1998 - Princeton University Press.
    "This wonderfully eloquent and playful colloquy of two brilliant minds gives new life to the old notion of Dialogue, a sadly forgotten form now.... I "love" this book!
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Prolegomena to a cognitive investigation of Euclidean diagrammatic reasoning.Yacin Hamami & John Mumma - 2013 - Journal of Logic, Language and Information 22 (4):421-448.
    Euclidean diagrammatic reasoning refers to the diagrammatic inferential practice that originated in the geometrical proofs of Euclid’s Elements. A seminal philosophical analysis of this practice by Manders (‘The Euclidean diagram’, 2008) has revealed that a systematic method of reasoning underlies the use of diagrams in Euclid’s proofs, leading in turn to a logical analysis aiming to capture this method formally via proof systems. The central premise of this paper is that our understanding of Euclidean diagrammatic reasoning can be fruitfully advanced (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Social Constructivism as a Philosophy of Mathematics.Paul Ernest - 1997 - Albany, NY, USA: State University of New York Press.
    Extends the ideas of social constructivism to the philosophy of mathematics, developing a powerful critique of traditional absolutist conceptions of mathematics, and proposing a reconceptualization of the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • What does it take to prove fermat's last theorem? Grothendieck and the logic of number theory.Colin McLarty - 2010 - Bulletin of Symbolic Logic 16 (3):359-377.
    This paper explores the set theoretic assumptions used in the current published proof of Fermat's Last Theorem, how these assumptions figure in the methods Wiles uses, and the currently known prospects for a proof using weaker assumptions.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Introduction.G. Aldo Antonelli - 2001 - Topoi 20 (1):1-3.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Prologue: Generality as a component of an epistemological culture.Karine Chemla, Renaud Chorlay & David Rabouin - 2016 - In Karine Chemla, Renaud Chorlay & David Rabouin (eds.), The Oxford Handbook of Generality in Mathematics and the Sciences. New York, NY, USA: Oxford University Press UK. pp. 1-41.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Knowledge and the Interplay of Practices.José Ferreirós - 2015 - Princeton, USA: Princeton University Press.
    On knowledge and practices: a manifesto -- The web of practices -- Agents and frameworks -- Complementarity in mathematics -- Ancient Greek mathematics: a role for diagrams -- Advanced math: the hypothetical conception -- Arithmetic certainty -- Mathematics developed: the case of the reals -- Objectivity in mathematical knowledge -- The problem of conceptual understanding.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Knowledge and Social Imagery.David Bloor - 1979 - British Journal for the Philosophy of Science 30 (2):195-199.
    Download  
     
    Export citation  
     
    Bookmark   539 citations  
  • Indispensability and Practice.Penelope Maddy - 1992 - Journal of Philosophy 89 (6):275.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • (1 other version)Identity in Homotopy Type Theory, Part I: The Justification of Path Induction.James Ladyman & Stuart Presnell - 2015 - Philosophia Mathematica 23 (3):386-406.
    Homotopy Type Theory is a proposed new language and foundation for mathematics, combining algebraic topology with logic. An important rule for the treatment of identity in HoTT is path induction, which is commonly explained by appeal to the homotopy interpretation of the theory's types, tokens, and identities as spaces, points, and paths. However, if HoTT is to be an autonomous foundation then such an interpretation cannot play a fundamental role. In this paper we give a derivation of path induction, motivated (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Constructive Analysis.Errett Bishop & Douglas Bridges - 1987 - Journal of Symbolic Logic 52 (4):1047-1048.
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • On arbitrary sets and ZFC.José Ferreirós - 2011 - Bulletin of Symbolic Logic 17 (3):361-393.
    Set theory deals with the most fundamental existence questions in mathematics—questions which affect other areas of mathematics, from the real numbers to structures of all kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually referred to under the labels of quasi-combinatorialism or combinatorial maximality. After explaining what (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The last mathematician from Hilbert's göttingen: Saunders Mac Lane as philosopher of mathematics.Colin McLarty - 2007 - British Journal for the Philosophy of Science 58 (1):77-112.
    While Saunders Mac Lane studied for his D.Phil in Göttingen, he heard David Hilbert's weekly lectures on philosophy, talked philosophy with Hermann Weyl, and studied it with Moritz Geiger. Their philosophies and Emmy Noether's algebra all influenced his conception of category theory, which has become the working structure theory of mathematics. His practice has constantly affirmed that a proper large-scale organization for mathematics is the most efficient path to valuable specific results—while he sees that the question of which results are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • New Perspectives on Mathematical Practices: Essays in Philosophy and History of Mathematics.Bart Van Kerkhove (ed.) - 2009 - World Scientific.
    This volume focuses on the importance of historical enquiry for the appreciation of philosophical problems concerning mathematics.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Das Kontinuum.H. Weyl - 1960 - Journal of Symbolic Logic 25 (3):282-284.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Beauty Is Not Simplicity: An Analysis of Mathematicians' Proof Appraisals.Matthew Inglis & Andrew Aberdein - 2015 - Philosophia Mathematica 23 (1):87-109.
    What do mathematicians mean when they use terms such as ‘deep’, ‘elegant’, and ‘beautiful’? By applying empirical methods developed by social psychologists, we demonstrate that mathematicians' appraisals of proofs vary on four dimensions: aesthetics, intricacy, utility, and precision. We pay particular attention to mathematical beauty and show that, contrary to the classical view, beauty and simplicity are almost entirely unrelated in mathematics.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Egg-Forms and Measure-Bodies: Different Mathematical Practices in the Early History of the Modern Theory of Convexity.Tinne Hoff Kjeldsen - 2009 - Science in Context 22 (1):85-113.
    ArgumentTwo simultaneous episodes in late nineteenth-century mathematical research, one by Karl Hermann Brunn and another by Hermann Minkowski, have been described as the origin of the theory of convex bodies. This article aims to understand and explain how and why the concept of such bodies emerged in these two trajectories of mathematical research; and why Minkowski's – and not Brunn's – strand of thought led to the development of a theory of convexity. Concrete pieces of Brunn's and Minkowski's mathematical work (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • That We See That Some Diagrammatic Proofs Are Perfectly Rigorous.Jody Azzouni - 2013 - Philosophia Mathematica 21 (3):323-338.
    Mistaken reasons for thinking diagrammatic proofs aren't rigorous are explored. The main result is that a confusion between the contents of a proof procedure (what's expressed by the referential elements in a proof procedure) and the unarticulated mathematical aspects of a proof procedure (how that proof procedure is enabled) gives the impression that diagrammatic proofs are less rigorous than language proofs. An additional (and independent) factor is treating the impossibility of naturally generalizing a diagrammatic proof procedure as an indication of (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Impact of the Philosophy of Mathematical Practice on the Philosophy of Mathematics.Jean Paul Van Bendegem - 2014 - In Lena Soler, Sjoerd Zwart, Michael Lynch & Vincent Israel-Jost (eds.), Science After the Practice Turn in the Philosophy, History, and Social Studies of Science. New York: Routledge. pp. 215-226.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Toward a History of Epistemic Things: Synthesizing Proteins in a Test Tube.[author unknown] - 1999 - Journal of the History of Biology 32 (3):563-565.
    Download  
     
    Export citation  
     
    Bookmark   243 citations  
  • Visual Thinking in Mathematics. [REVIEW]Marcus Giaquinto - 2009 - Analysis 69 (2):401-403.
    Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late 19th century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis received much attention in the 19th century. They helped to instigate what Hans Hahn called a ‘crisis of intuition’, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this ‘crisis’ as follows : " Mathematicians had for (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations