Switch to: References

Add citations

You must login to add citations.
  1. On Fraïssé’s conjecture for linear orders of finite Hausdorff rank.Alberto Marcone & Antonio Montalbán - 2009 - Annals of Pure and Applied Logic 160 (3):355-367.
    We prove that the maximal order type of the wqo of linear orders of finite Hausdorff rank under embeddability is φ2, the first fixed point of the ε-function. We then show that Fraïssé’s conjecture restricted to linear orders of finite Hausdorff rank is provable in +“φ2 is well-ordered” and, over , implies +“φ2 is well-ordered”.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The maximal linear extension theorem in second order arithmetic.Alberto Marcone & Richard A. Shore - 2011 - Archive for Mathematical Logic 50 (5-6):543-564.
    We show that the maximal linear extension theorem for well partial orders is equivalent over RCA0 to ATR0. Analogously, the maximal chain theorem for well partial orders is equivalent to ATR0 over RCA0.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Open questions in reverse mathematics.Antonio Montalbán - 2011 - Bulletin of Symbolic Logic 17 (3):431-454.
    We present a list of open questions in reverse mathematics, including some relevant background information for each question. We also mention some of the areas of reverse mathematics that are starting to be developed and where interesting open question may be found.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Fraïssé’s conjecture in [math]-comprehension.Antonio Montalbán - 2017 - Journal of Mathematical Logic 17 (2):1750006.
    We prove Fraïssé’s conjecture within the system of Π11-comprehension. Furthermore, we prove that Fraïssé’s conjecture follows from the Δ20-bqo-ness of 3 over the system of Arithmetic Transfinite Recursion, and that the Δ20-bqo-ness of 3 is a Π21-statement strictly weaker than Π11-comprehension.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An order-theoretic characterization of the Howard–Bachmann-hierarchy.Jeroen Van der Meeren, Michael Rathjen & Andreas Weiermann - 2017 - Archive for Mathematical Logic 56 (1-2):79-118.
    In this article we provide an intrinsic characterization of the famous Howard–Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with respect to a homeomorphic embeddability relation. We use our calculations to draw some conclusions about some corresponding subsystems of second order arithmetic. All these subsystems deal with versions of light-face Π11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPi ^1_1$$\end{document}-comprehension.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interval Orders and Reverse Mathematics.Alberto Marcone - 2007 - Notre Dame Journal of Formal Logic 48 (3):425-448.
    We study the reverse mathematics of interval orders. We establish the logical strength of the implications among various definitions of the notion of interval order. We also consider the strength of different versions of the characterization theorem for interval orders: a partial order is an interval order if and only if it does not contain 2 \oplus 2. We also study proper interval orders and their characterization theorem: a partial order is a proper interval order if and only if it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Constructing sequences one step at a time.Henry Towsner - 2020 - Journal of Mathematical Logic 20 (3):2050017.
    We propose a new method for constructing Turing ideals satisfying principles of reverse mathematics below the Chain–Antichain (CAC) Principle. Using this method, we are able to prove several new separations in the presence of Weak König’s Lemma (WKL), including showing that CAC+WKL does not imply the thin set theorem for pairs, and that the principle “the product of well-quasi-orders is a well-quasi-order” is strictly between CAC and the Ascending/Descending Sequences principle, even in the presence of WKL.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reverse mathematics and initial intervals.Emanuele Frittaion & Alberto Marcone - 2014 - Annals of Pure and Applied Logic 165 (3):858-879.
    In this paper we study the reverse mathematics of two theorems by Bonnet about partial orders. These results concern the structure and cardinality of the collection of initial intervals. The first theorem states that a partial order has no infinite antichains if and only if its initial intervals are finite unions of ideals. The second one asserts that a countable partial order is scattered and does not contain infinite antichains if and only if it has countably many initial intervals. We (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reverse mathematics, well-quasi-orders, and Noetherian spaces.Emanuele Frittaion, Matthew Hendtlass, Alberto Marcone, Paul Shafer & Jeroen Van der Meeren - 2016 - Archive for Mathematical Logic 55 (3):431-459.
    A quasi-order Q induces two natural quasi-orders on $${\mathcal{P}(Q)}$$, but if Q is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq (Proceedings of the 22nd Annual IEEE Symposium 4 on Logic in Computer Science (LICS’07), pp. 453–462, 2007) showed that moving from a well-quasi-order Q to the quasi-orders on $${\mathcal{P}(Q)}$$ preserves well-quasi-orderedness in a topological sense. Specifically, Goubault-Larrecq proved that the upper topologies of the induced quasi-orders on $${\mathcal{P}(Q)}$$ are Noetherian, which means that they contain no (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The strength of infinitary Ramseyan principles can be accessed by their densities.Andrey Bovykin & Andreas Weiermann - 2017 - Annals of Pure and Applied Logic 168 (9):1700-1709.
    Download  
     
    Export citation  
     
    Bookmark   6 citations