Switch to: References

Add citations

You must login to add citations.
  1. Computing maximal chains.Alberto Marcone, Antonio Montalbán & Richard A. Shore - 2012 - Archive for Mathematical Logic 51 (5-6):651-660.
    In (Fund Math 60:175–186 1967), Wolk proved that every well partial order (wpo) has a maximal chain; that is a chain of maximal order type. (Note that all chains in a wpo are well-ordered.) We prove that such maximal chain cannot be found computably, not even hyperarithmetically: No hyperarithmetic set can compute maximal chains in all computable wpos. However, we prove that almost every set, in the sense of category, can compute maximal chains in all computable wpos. Wolk’s original result (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematics, well-quasi-orders, and Noetherian spaces.Emanuele Frittaion, Matthew Hendtlass, Alberto Marcone, Paul Shafer & Jeroen Van der Meeren - 2016 - Archive for Mathematical Logic 55 (3):431-459.
    A quasi-order Q induces two natural quasi-orders on $${\mathcal{P}(Q)}$$, but if Q is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq (Proceedings of the 22nd Annual IEEE Symposium 4 on Logic in Computer Science (LICS’07), pp. 453–462, 2007) showed that moving from a well-quasi-order Q to the quasi-orders on $${\mathcal{P}(Q)}$$ preserves well-quasi-orderedness in a topological sense. Specifically, Goubault-Larrecq proved that the upper topologies of the induced quasi-orders on $${\mathcal{P}(Q)}$$ are Noetherian, which means that they contain no (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Linear extensions of partial orders and reverse mathematics.Emanuele Frittaion & Alberto Marcone - 2012 - Mathematical Logic Quarterly 58 (6):417-423.
    We introduce the notion of τ-like partial order, where τ is one of the linear order types ω, ω*, ω + ω*, and ζ. For example, being ω-like means that every element has finitely many predecessors, while being ζ-like means that every interval is finite. We consider statements of the form “any τ-like partial order has a τ-like linear extension” and “any τ-like partial order is embeddable into τ” . Working in the framework of reverse mathematics, we show that these (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Finding descending sequences through ill-founded linear orders.Jun le Goh, Arno Pauly & Manlio Valenti - 2021 - Journal of Symbolic Logic 86 (2):817-854.
    In this work we investigate the Weihrauch degree of the problem Decreasing Sequence of finding an infinite descending sequence through a given ill-founded linear order, which is shared by the problem Bad Sequence of finding a bad sequence through a given non-well quasi-order. We show that $\mathsf {DS}$, despite being hard to solve, is rather weak in terms of uniform computational strength. To make the latter precise, we introduce the notion of the deterministic part of a Weihrauch degree. We then (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reverse mathematics and initial intervals.Emanuele Frittaion & Alberto Marcone - 2014 - Annals of Pure and Applied Logic 165 (3):858-879.
    In this paper we study the reverse mathematics of two theorems by Bonnet about partial orders. These results concern the structure and cardinality of the collection of initial intervals. The first theorem states that a partial order has no infinite antichains if and only if its initial intervals are finite unions of ideals. The second one asserts that a countable partial order is scattered and does not contain infinite antichains if and only if it has countably many initial intervals. We (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (Extra)Ordinary Equivalences with the Ascending/Descending Sequence Principle.Marta Fiori-Carones, Alberto Marcone, Paul Shafer & Giovanni Soldà - 2024 - Journal of Symbolic Logic 89 (1):262-307.
    We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ (...)
    Download  
     
    Export citation  
     
    Bookmark