Switch to: References

Add citations

You must login to add citations.
  1. The Dirac delta function in two settings of Reverse Mathematics.Sam Sanders & Keita Yokoyama - 2012 - Archive for Mathematical Logic 51 (1-2):99-121.
    The program of Reverse Mathematics (Simpson 2009) has provided us with the insight that most theorems of ordinary mathematics are either equivalent to one of a select few logical principles, or provable in a weak base theory. In this paper, we study the properties of the Dirac delta function (Dirac 1927; Schwartz 1951) in two settings of Reverse Mathematics. In particular, we consider the Dirac Delta Theorem, which formalizes the well-known property \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reverse-engineering Reverse Mathematics.Sam Sanders - 2013 - Annals of Pure and Applied Logic 164 (5):528-541.
    An important open problem in Reverse Mathematics is the reduction of the first-order strength of the base theory from IΣ1IΣ1 to IΔ0+expIΔ0+exp. The system ERNA, a version of Nonstandard Analysis based on the system IΔ0+expIΔ0+exp, provides a partial solution to this problem. Indeed, weak Königʼs lemma and many of its equivalent formulations from Reverse Mathematics can be ‘pushed down’ into ERNA, while preserving the equivalences, but at the price of replacing equality with ‘≈’, i.e. infinitesimal proximity . The logical principle (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relative arithmetic.Sam Sanders - 2010 - Mathematical Logic Quarterly 56 (6):564-572.
    In nonstandard mathematics, the predicate ‘x is standard’ is fundamental. Recently, ‘relative’ or ‘stratified’ nonstandard theories have been developed in which this predicate is replaced with ‘x is y -standard’. Thus, objects are not standard in an absolute sense, but standard relative to other objects and there is a whole stratified universe of ‘levels’ or ‘degrees’ of standardness. Here, we study stratified nonstandard arithmetic and the related transfer principle. Using the latter, we obtain the ‘reduction theorem’ which states that arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • More infinity for a better finitism.Sam Sanders - 2010 - Annals of Pure and Applied Logic 161 (12):1525-1540.
    Elementary Recursive Nonstandard Analysis, in short ERNA, is a constructive system of nonstandard analysis with a PRA consistency proof, proposed in around 1995 by Patrick Suppes and Richard Sommer. It is based on an earlier system developed by Rolando Chuaqui and Patrick Suppes. Here, we discuss the inherent problems and limitations of the classical nonstandard framework and propose a much-needed refinement of ERNA, called , in the spirit of Karel Hrbacek’s stratified set theory. We study the metamathematics of and its (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Erna and Friedman's reverse mathematics.Sam Sanders - 2011 - Journal of Symbolic Logic 76 (2):637 - 664.
    Elementary Recursive Nonstandard Analysis, in short ERNA, is a constructive system of nonstandard analysis with a PRA consistency proof, proposed around 1995 by Patrick Suppes and Richard Sommer. Recently, the author showed the consistency of ERNA with several transfer principles and proved results of nonstandard analysis in the resulting theories (see [12] and [13]). Here, we show that Weak König's lemma (WKL) and many of its equivalent formulations over RCA₀ from Reverse Mathematics (see [21] and [22]) can be 'pushed down' (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the connection between Nonstandard Analysis and Constructive Analysis.Sam Sanders - forthcoming - Logique Et Analyse.
    Constructive Analysis and Nonstandard Analysis are often characterized as completely antipodal approaches to analysis. We discuss the possibility of capturing the central notion of Constructive Analysis (i.e. algorithm, finite procedure or explicit construction) by a simple concept inside Nonstandard Analysis. To this end, we introduce Omega-invariance and argue that it partially satisfies our goal. Our results provide a dual approach to Erik Palmgren's development of Nonstandard Analysis inside constructive mathematics.
    Download  
     
    Export citation  
     
    Bookmark