Switch to: References

Citations of:

Computability Theory

Chapman & Hall (2003)

Add citations

You must login to add citations.
  1. Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The Deluge of Spurious Correlations in Big Data.Cristian S. Calude & Giuseppe Longo - 2016 - Foundations of Science 22 (3):595-612.
    Very large databases are a major opportunity for science and data analytics is a remarkable new field of investigation in computer science. The effectiveness of these tools is used to support a “philosophy” against the scientific method as developed throughout history. According to this view, computer-discovered correlations should replace understanding and guide prediction and action. Consequently, there will be no need to give scientific meaning to phenomena, by proposing, say, causal relations, since regularities in very large databases are enough: “with (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Making AI Meaningful Again.Jobst Landgrebe & Barry Smith - 2021 - Synthese 198 (March):2061-2081.
    Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the 1970s and 80s. But this enthusiasm was tempered by a long interlude of frustration when genuinely useful AI applications failed to be forthcoming. Today, we are experiencing once again a period of enthusiasm, fired above all by the successes of the technology of deep neural networks or deep machine learning. In this paper we draw attention to what we take to be serious problems underlying current views of artificial (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Bounded enumeration reducibility and its degree structure.Daniele Marsibilio & Andrea Sorbi - 2012 - Archive for Mathematical Logic 51 (1-2):163-186.
    We study a strong enumeration reducibility, called bounded enumeration reducibility and denoted by ≤be, which is a natural extension of s-reducibility ≤s. We show that ≤s, ≤be, and enumeration reducibility do not coincide on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} –sets, and the structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{\mathcal{D}_{\rm be}}}$$\end{document} of the be-degrees is not elementarily equivalent to the structure of the s-degrees. We show also that the first order theory (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Goodness in the enumeration and singleton degrees.Charles M. Harris - 2010 - Archive for Mathematical Logic 49 (6):673-691.
    We investigate and extend the notion of a good approximation with respect to the enumeration ${({\mathcal D}_{\rm e})}$ and singleton ${({\mathcal D}_{\rm s})}$ degrees. We refine two results by Griffith, on the inversion of the jump of sets with a good approximation, and we consider the relation between the double jump and index sets, in the context of enumeration reducibility. We study partial order embeddings ${\iota_s}$ and ${\hat{\iota}_s}$ of, respectively, ${{\mathcal D}_{\rm e}}$ and ${{\mathcal D}_{\rm T}}$ (the Turing degrees) into (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Branching in the $${\Sigma^0_2}$$ -enumeration degrees: a new perspective. [REVIEW]Maria L. Affatato, Thomas F. Kent & Andrea Sorbi - 2008 - Archive for Mathematical Logic 47 (3):221-231.
    We give an alternative and more informative proof that every incomplete ${\Sigma^{0}_{2}}$ -enumeration degree is the meet of two incomparable ${\Sigma^{0}_{2}}$ -degrees, which allows us to show the stronger result that for every incomplete ${\Sigma^{0}_{2}}$ -enumeration degree a, there exist enumeration degrees x 1 and x 2 such that a, x 1, x 2 are incomparable, and for all b ≤ a, b = (b ∨ x 1 ) ∧ (b ∨ x 2 ).
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Topological aspects of the Medvedev lattice.Andrew Em Lewis, Richard A. Shore & Andrea Sorbi - 2011 - Archive for Mathematical Logic 50 (3-4):319-340.
    We study the Medvedev degrees of mass problems with distinguished topological properties, such as denseness, closedness, or discreteness. We investigate the sublattices generated by these degrees; the prime ideal generated by the dense degrees and its complement, a prime filter; the filter generated by the nonzero closed degrees and the filter generated by the nonzero discrete degrees. We give a complete picture of the relationships of inclusion holding between these sublattices, these filters, and this ideal. We show that the sublattice (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Lachlan’s major sub-degree problem.S. Barry Cooper & Angsheng Li - 2008 - Archive for Mathematical Logic 47 (4):341-434.
    The Major Sub-degree Problem of A. H. Lachlan (first posed in 1967) has become a long-standing open question concerning the structure of the computably enumerable (c.e.) degrees. Its solution has important implications for Turing definability and for the ongoing programme of fully characterising the theory of the c.e. Turing degrees. A c.e. degree a is a major subdegree of a c.e. degree b > a if for any c.e. degree x, ${{\bf 0' = b \lor x}}$ if and only if (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Immunity properties and strong positive reducibilities.Irakli O. Chitaia, Roland Sh Omanadze & Andrea Sorbi - 2011 - Archive for Mathematical Logic 50 (3-4):341-352.
    We use certain strong Q-reducibilities, and their corresponding strong positive reducibilities, to characterize the hyperimmune sets and the hyperhyperimmune sets: if A is any infinite set then A is hyperimmune (respectively, hyperhyperimmune) if and only if for every infinite subset B of A, one has \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{K}\not\le_{\rm ss} B}$$\end{document} (respectively, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{K}\not\le_{\overline{\rm s}} B}$$\end{document}): here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\le_{\overline{\rm (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computability Issues for Adaptive Logics in Multi-Consequence Standard Format.Sergei P. Odintsov & Stanislav O. Speranski - 2013 - Studia Logica 101 (6):1237-1262.
    In a rather general setting, we prove a number of basic theorems concerning computational complexity of derivability in adaptive logics. For that setting, the so-called standard format of adaptive logics is suitably adopted, and the corresponding completeness results are established in a very uniform way.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Badness and jump inversion in the enumeration degrees.Charles M. Harris - 2012 - Archive for Mathematical Logic 51 (3-4):373-406.
    This paper continues the investigation into the relationship between good approximations and jump inversion initiated by Griffith. Firstly it is shown that there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^{0}_{2}}$$\end{document} set A whose enumeration degree a is bad—i.e. such that no set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \in a}$$\end{document} is good approximable—and whose complement \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{A}}$$\end{document} has lowest possible jump, in other words (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The limitations of cupping in the local structure of the enumeration degrees.Mariya I. Soskova - 2010 - Archive for Mathematical Logic 49 (2):169-193.
    We prove that a sequence of sets containing representatives of cupping partners for every nonzero ${\Delta^0_2}$ enumeration degree cannot have a ${\Delta^0_2}$ enumeration. We also prove that no subclass of the ${\Sigma^0_2}$ enumeration degrees containing the nonzero 3-c.e. enumeration degrees can be cupped to ${\mathbf{0}_e'}$ by a single incomplete ${\Sigma^0_2}$ enumeration degree.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A note on the enumeration degrees of 1-generic sets.Liliana Badillo, Caterina Bianchini, Hristo Ganchev, Thomas F. Kent & Andrea Sorbi - 2016 - Archive for Mathematical Logic 55 (3):405-414.
    We show that every nonzero $${\Delta^{0}_{2}}$$ enumeration degree bounds the enumeration degree of a 1-generic set. We also point out that the enumeration degrees of 1-generic sets, below the first jump, are not downwards closed, thus answering a question of Cooper.
    Download  
     
    Export citation  
     
    Bookmark   1 citation