Switch to: References

Add citations

You must login to add citations.
  1. A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions.Juan Manuel Cornejo & Hanamantagouda P. Sankappanavar - 2022 - Bulletin of the Section of Logic 51 (4):555-645.
    The variety \(\mathbb{DHMSH}\) of dually hemimorphic semi-Heyting algebras was introduced in 2011 by the second author as an expansion of semi-Heyting algebras by a dual hemimorphism. In this paper, we focus on the variety \(\mathbb{DHMSH}\) from a logical point of view. The paper presents an extensive investigation of the logic corresponding to the variety of dually hemimorphic semi-Heyting algebras and of its axiomatic extensions, along with an equally extensive universal algebraic study of their corresponding algebraic semantics. Firstly, we present a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dually hemimorphic semi-Nelson algebras.Juan Manuel Cornejo & HernÁn Javier San MartÍn - 2020 - Logic Journal of the IGPL 28 (3):316-340.
    Extending the relation between semi-Heyting algebras and semi-Nelson algebras to dually hemimorphic semi-Heyting algebras, we introduce and study the variety of dually hemimorphic semi-Nelson algebras and some of its subvarieties. In particular, we prove that the category of dually hemimorphic semi-Heyting algebras is equivalent to the category of dually hemimorphic centered semi-Nelson algebras. We also study the lattice of congruences of a dually hemimorphic semi-Nelson algebra through some of its deductive systems.
    Download  
     
    Export citation  
     
    Bookmark   1 citation