Switch to: References

Citations of:

Protoalgebraic Logics

Studia Logica 74 (1):313-342 (2003)

Add citations

You must login to add citations.
  1. Constructible models of orthomodular quantum logics.Piotr Wilczek - unknown
    We continue in this article the abstract algebraic treatment of quantum sentential logics Wil. The Notions borrowed from the field of Model Theory and Abstract Algebraic Logic - AAL (i.e., consequence relation, variety, logical matrix, deductive filter, reduced product, ultraproduct, ultrapower, Frege relation, Leibniz congruence, Suszko congruence, Leibniz operator) are applied to quantum logics. We also proved several equivalences between state property systems (Jauch-Piron-Aerts line of investigations) and AAL treatment of quantum logics (corollary 18 and 19). We show that there (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the logic of distributive nearlattices.Luciano J. González - 2022 - Mathematical Logic Quarterly 68 (3):375-385.
    We study the propositional logic associated with the variety of distributive nearlattices. We prove that the logic coincides with the assertional logic associated with the variety and with the order‐based logic associated with. We obtain a characterization of the reduced matrix models of logic. We develop a connection between the logic and the ‐fragment of classical logic. Finally, we present two Hilbert‐style axiomatizations for the logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logics of variable inclusion and the lattice of consequence relations.Michele Pra Baldi - 2020 - Journal of Applied Non-Classical Logics 30 (4):367-381.
    In this paper, first, we determine the number of sublogics of variable inclusion of an arbitrary finitary logic ⊢ with a composition term. Then, we investigate their position into the lattice of co...
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-involutive twist-structures.Umberto Rivieccio, Paulo Maia & Achim Jung - 2020 - Logic Journal of the IGPL 28 (5):973-999.
    A recent paper by Jakl, Jung and Pultr succeeded for the first time in establishing a very natural link between bilattice logic and the duality theory of d-frames and bitopological spaces. In this paper we further exploit, extend and investigate this link from an algebraic and a logical point of view. In particular, we introduce classes of algebras that extend bilattices, d-frames and N4-lattices to a setting in which the negation is not necessarily involutive, and we study corresponding logics. We (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Epimorphisms, Definability and Cardinalities.T. Moraschini, J. G. Raftery & J. J. Wannenburg - 2020 - Studia Logica 108 (2):255-275.
    We characterize, in syntactic terms, the ranges of epimorphisms in an arbitrary class of similar first-order structures. This allows us to strengthen a result of Bacsich, as follows: in any prevariety having at most \ non-logical symbols and an axiomatization requiring at most \ variables, if the epimorphisms into structures with at most \ elements are surjective, then so are all of the epimorphisms. Using these facts, we formulate and prove manageable ‘bridge theorems’, matching the surjectivity of all epimorphisms in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Paraconsistent Logic: Consistency, Contradiction and Negation.Walter Carnielli & Marcelo Esteban Coniglio - 2016 - Basel, Switzerland: Springer International Publishing. Edited by Marcelo Esteban Coniglio.
    This book is the first in the field of paraconsistency to offer a comprehensive overview of the subject, including connections to other logics and applications in information processing, linguistics, reasoning and argumentation, and philosophy of science. It is recommended reading for anyone interested in the question of reasoning and argumentation in the presence of contradictions, in semantics, in the paradoxes of set theory and in the puzzling properties of negation in logic programming. Paraconsistent logic comprises a major logical theory and (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Suszko’s Thesis, Inferential Many-valuedness, and the Notion of a Logical System.Heinrich Wansing & Yaroslav Shramko - 2008 - Studia Logica 88 (3):405-429.
    According to Suszko’s Thesis, there are but two logical values, true and false. In this paper, R. Suszko’s, G. Malinowski’s, and M. Tsuji’s analyses of logical twovaluedness are critically discussed. Another analysis is presented, which favors a notion of a logical system as encompassing possibly more than one consequence relation. [A] fundamental problem concerning many-valuedness is to know what it really is. [13, p. 281].
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Selfextensional Logics with a Conjunction.Ramon Jansana - 2006 - Studia Logica 84 (1):63-104.
    A logic is selfextensional if its interderivability (or mutual consequence) relation is a congruence relation on the algebra of formulas. In the paper we characterize the selfextensional logics with a conjunction as the logics that can be defined using the semilattice order induced by the interpretation of the conjunction in the algebras of their algebraic counterpart. Using the charactrization we provide simpler proofs of several results on selfextensional logics with a conjunction obtained in [13] using Gentzen systems. We also obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Algebraic Kripke-Style Semantics for Relevance Logics.Eunsuk Yang - 2014 - Journal of Philosophical Logic 43 (4):803-826.
    This paper deals with one kind of Kripke-style semantics, which we shall call algebraic Kripke-style semantics, for relevance logics. We first recall the logic R of relevant implication and some closely related systems, their corresponding algebraic structures, and algebraic completeness results. We provide simpler algebraic completeness proofs. We then introduce various types of algebraic Kripke-style semantics for these systems and connect them with algebraic semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Replacement in Logic.Lloyd Humberstone - 2013 - Journal of Philosophical Logic 42 (1):49-89.
    We study a range of issues connected with the idea of replacing one formula by another in a fixed context. The replacement core of a consequence relation ⊢ is the relation holding between a set of formulas {A1,..., Am,...} and a formula B when for every context C, we have C,..., C,... ⊢ C. Section 1 looks at some differences between which inferences are lost on passing to the replacement cores of the classical and intuitionistic consequence relations. For example, we (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Paraconsistent Belief Revision: An Algebraic Investigation.Massimiliano Carrara, Davide Fazio & Michele Pra Baldi - 2022 - Erkenntnis 89 (2):725-753.
    This paper offers a logico-algebraic investigation of AGM belief revision based on the logic of paradox ( \(\mathrm {LP}\) ). First, we define a concrete belief revision operator for \(\mathrm {LP}\), proving that it satisfies a generalised version of the traditional AGM postulates. Moreover, we investigate to what extent the Levi and Harper identities, in their classical formulation, can be applied to a paraconsistent account of revision. We show that a generalised Levi-type identity still yields paraconsistent-based revisions that are fully (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Substructural Gentzen Calculus for Orthomodular Quantum Logic.Davide Fazio, Antonio Ledda, Francesco Paoli & Gavin St John - 2023 - Review of Symbolic Logic 16 (4):1177-1198.
    We introduce a sequent system which is Gentzen algebraisable with orthomodular lattices as equivalent algebraic semantics, and therefore can be viewed as a calculus for orthomodular quantum logic. Its sequents are pairs of non-associative structures, formed via a structural connective whose algebraic interpretation is the Sasaki product on the left-hand side and its De Morgan dual on the right-hand side. It is a substructural calculus, because some of the standard structural sequent rules are restricted—by lifting all such restrictions, one recovers (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The semantic isomorphism theorem in abstract algebraic logic.Tommaso Moraschini - 2016 - Annals of Pure and Applied Logic 167 (12):1298-1331.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Behavioral equivalence of hidden k -logics: An abstract algebraic approach.Sergey Babenyshev & Manuel A. Martins - 2016 - Journal of Applied Logic 16:72-91.
    Download  
     
    Export citation  
     
    Bookmark  
  • Almost structural completeness; an algebraic approach.Wojciech Dzik & Michał M. Stronkowski - 2016 - Annals of Pure and Applied Logic 167 (7):525-556.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the Deductive System of the Order of an Equationally Orderable Quasivariety.Ramon Jansana - 2016 - Studia Logica 104 (3):547-566.
    We consider the equationally orderable quasivarieties and associate with them deductive systems defined using the order. The method of definition of these deductive systems encompasses the definition of logics preserving degrees of truth we find in the research areas of substructural logics and mathematical fuzzy logic. We prove several general results, for example that the deductive systems so defined are finitary and that the ones associated with equationally orderable varieties are congruential.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some remarks on axiomatizing logical consequence operations.Jacek Malinowski - 2005 - Logic and Logical Philosophy 14 (1):103-117.
    In this paper we investigate the relation between the axiomatization of a given logical consequence operation and axiom systems defining the class of algebras related to that consequence operation. We show examples which prove that, in general there are no natural relation between both ways of axiomatization.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the complexity of the Leibniz hierarchy.Tommaso Moraschini - 2019 - Annals of Pure and Applied Logic 170 (7):805-824.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Beth Property in Algebraic Logic.W. J. Blok & Eva Hoogland - 2006 - Studia Logica 83 (1-3):49-90.
    The present paper is a study in abstract algebraic logic. We investigate the correspondence between the metalogical Beth property and the algebraic property of surjectivity of epimorphisms. It will be shown that this correspondence holds for the large class of equivalential logics. We apply our characterization theorem to relevance logics and many-valued logics.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • R and Relevance Principle Revisited.Eunsuk Yang - 2013 - Journal of Philosophical Logic 42 (5):767-782.
    This paper first shows that some versions of the logic R of Relevance do not satisfy the relevance principle introduced by Anderson and Belnap, the principle of which is generally accepted as the principle for relevance. After considering several possible (but defective) improvements of the relevance principle, this paper presents a new relevance principle for (three versions of) R, and explains why this principle is better than the original and others.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Contextual Deduction Theorems.J. G. Raftery - 2011 - Studia Logica 99 (1-3):279-319.
    Logics that do not have a deduction-detachment theorem (briefly, a DDT) may still possess a contextual DDT —a syntactic notion introduced here for arbitrary deductive systems, along with a local variant. Substructural logics without sentential constants are natural witnesses to these phenomena. In the presence of a contextual DDT, we can still upgrade many weak completeness results to strong ones, e.g., the finite model property implies the strong finite model property. It turns out that a finitary system has a contextual (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Free Spectra of Linear Equivalential Algebras.Katarzyna Slomczyńska - 2005 - Journal of Symbolic Logic 70 (4):1341 - 1358.
    We construct the finitely generated free algebras and determine the free spectra of varieties of linear equivalential algebras and linear equivalential algebras of finite height corresponding. respectively, to the equivalential fragments of intermediate Gödel-Dummett logic and intermediate finite-valued logics of Gödel. Thus we compute the number of purely equivalential propositional formulas in these logics in n variables for an arbitrary n ∈ N.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Join-completions of partially ordered algebras.José Gil-Férez, Luca Spada, Constantine Tsinakis & Hongjun Zhou - 2020 - Annals of Pure and Applied Logic 171 (10):102842.
    We present a systematic study of join-extensions and join-completions of partially ordered algebras, which naturally leads to a refined and simplified treatment of fundamental results and constructions in the theory of ordered structures ranging from properties of the Dedekind–MacNeille completion to the proof of the finite embeddability property for a number of varieties of lattice-ordered algebras.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Deterministic Weakening of Belnap–Dunn Logic.Minghui Ma & Yuanlei Lin - 2019 - Studia Logica 107 (2):283-312.
    A deterministic weakening \ of the Belnap–Dunn four-valued logic \ is introduced to formalize the acceptance and rejection of a proposition at a state in a linearly ordered informational frame with persistent valuations. The logic \ is formalized as a sequent calculus. The completeness and decidability of \ with respect to relational semantics are shown in terms of normal forms. From an algebraic perspective, the class of all algebras for \ is described, and found to be a subvariety of Berman’s (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Implicational Tonoid Logics: Algebraic and Relational Semantics.Eunsuk Yang & J. Michael Dunn - 2021 - Logica Universalis 15 (4):435-456.
    This paper combines two classes of generalized logics, one of which is the class of weakly implicative logics introduced by Cintula and the other of which is the class of gaggle logics introduced by Dunn. For this purpose we introduce implicational tonoid logics. More precisely, we first define implicational tonoid logics in general and examine their relation to weakly implicative logics. We then provide algebraic semantics for implicational tonoid logics. Finally, we consider relational semantics, called Routley–Meyer–style semantics, for finitary those (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Leibniz interpolation properties.Leonardo Cabrer & José Gil-Férez - 2014 - Annals of Pure and Applied Logic 165 (4):933-962.
    We introduce a family of notions of interpolation for sentential logics. These concepts generalize the ones for substructural logics introduced in [5]. We show algebraic characterizations of these notions for the case of equivalential logics and study the relation between them and the usual concepts of Deductive, Robinson, and Maehara interpolation properties.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weakly Implicative (Fuzzy) Logics I: Basic Properties. [REVIEW]Petr Cintula - 2006 - Archive for Mathematical Logic 45 (6):673-704.
    This paper presents two classes of propositional logics (understood as a consequence relation). First we generalize the well-known class of implicative logics of Rasiowa and introduce the class of weakly implicative logics. This class is broad enough to contain many “usual” logics, yet easily manageable with nice logical properties. Then we introduce its subclass–the class of weakly implicative fuzzy logics. It contains the majority of logics studied in the literature under the name fuzzy logic. We present many general theorems for (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Algebraizable logics with a strong conjunction and their semi-lattice based companions.Ramon Jansana - 2012 - Archive for Mathematical Logic 51 (7-8):831-861.
    The best known algebraizable logics with a conjunction and an implication have the property that the conjunction defines a meet semi-lattice in the algebras of their algebraic counterpart. This property makes it possible to associate with them a semi-lattice based deductive system as a companion. Moreover, the order of the semi-lattice is also definable using the implication. This makes that the connection between the properties of the logic and the properties of its semi-lattice based companion is strong. We introduce a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Partially Undetermined Many-Valued Events and Their Conditional Probability.Franco Montagna - 2012 - Journal of Philosophical Logic 41 (3):563-593.
    A logic for classical conditional events was investigated by Dubois and Prade. In their approach, the truth value of a conditional event may be undetermined. In this paper we extend the treatment to many-valued events. Then we support the thesis that probability over partially undetermined events is a conditional probability, and we interpret it in terms of bets in the style of de Finetti. Finally, we show that the whole investigation can be carried out in a logical and algebraic setting, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logics of upsets of De Morgan lattices.Adam Přenosil - forthcoming - Mathematical Logic Quarterly.
    We study logics determined by matrices consisting of a De Morgan lattice with an upward closed set of designated values, such as the logic of non‐falsity preservation in a given finite Boolean algebra and Shramko's logic of non‐falsity preservation in the four‐element subdirectly irreducible De Morgan lattice. The key tool in the study of these logics is the lattice‐theoretic notion of an n‐filter. We study the logics of all (complete, consistent, and classical) n‐filters on De Morgan lattices, which are non‐adjunctive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logics of left variable inclusion and Płonka sums of matrices.S. Bonzio, T. Moraschini & M. Pra Baldi - 2020 - Archive for Mathematical Logic (1):49-76.
    The paper aims at studying, in full generality, logics defined by imposing a variable inclusion condition on a given logic $$\vdash $$. We prove that the description of the algebraic counterpart of the left variable inclusion companion of a given logic $$\vdash $$ is related to the construction of Płonka sums of the matrix models of $$\vdash $$. This observation allows to obtain a Hilbert-style axiomatization of the logics of left variable inclusion, to describe the structure of their reduced models, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Identical Twins, Deduction Theorems, and Pattern Functions: Exploring the Implicative BCSK Fragment of S5.Lloyd Humberstone - 2006 - Journal of Philosophical Logic 35 (5):435-487.
    We recapitulate (Section 1) some basic details of the system of implicative BCSK logic, which has two primitive binary implicational connectives, and which can be viewed as a certain fragment of the modal logic S5. From this modal perspective we review (Section 2) some results according to which the pure sublogic in either of these connectives (i.e., each considered without the other) is an exact replica of the material implication fragment of classical propositional logic. In Sections 3 and 5 we (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Performability of Actions.Janusz Czelakowski - 2021 - Journal of Logic, Language and Information 30 (4):753-804.
    Action theory may be regarded as a theoretical foundation of AI, because it provides in a logically coherent way the principles of performing actions by agents. But, more importantly, action theory offers a formal ontology mainly based on set-theoretic constructs. This ontology isolates various types of actions as structured entities: atomic, sequential, compound, ordered, situational actions etc., and it is a solid and non-removable foundation of any rational activity. The paper is mainly concerned with a bunch of issues centered around (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • General Theory of the Commutator for Deductive Systems. Part I. Basic Facts.Janusz Czelakowski - 2006 - Studia Logica 83 (1-3):183-214.
    The purpose of this paper is to present in a uniform way the commutator theory for k-deductive system of arbitrary positive dimension k. We are interested in the logical perspective of the research — an emphasis is put on an analysis of the interconnections holding between the commutator and logic. This research thus qualifies as belonging to abstract algebraic logic, an area of universal algebra that explores to a large extent the methods provided by the general theory of deductive systems. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fragments of R-Mingle.W. J. Blok & J. G. Raftery - 2004 - Studia Logica 78 (1-2):59-106.
    The logic RM and its basic fragments (always with implication) are considered here as entire consequence relations, rather than as sets of theorems. A new observation made here is that the disjunction of RM is definable in terms of its other positive propositional connectives, unlike that of R. The basic fragments of RM therefore fall naturally into two classes, according to whether disjunction is or is not definable. In the equivalent quasivariety semantics of these fragments, which consist of subreducts of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Preface.Matteo Pascucci & Adam Tamas Tuboly - 2019 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 26 (3):318-322.
    Special issue: "Reflecting on the Legacy of C.I. Lewis: Contemporary and Historical Perspectives on Modal Logic".
    Download  
     
    Export citation  
     
    Bookmark  
  • Birkhoff’s and Mal’cev’s Theorems for Implicational Tonoid Logics.Eunsuk Yang - 2023 - Studia Logica 111 (3):501-519.
    In the context of implicational tonoid logics, this paper investigates analogues of Birkhoff’s two theorems, the so-called subdirect representation and varieties theorems, and of Mal’cev’s quasi-varieties theorem. More precisely, we first recall the class of implicational tonoid logics. Next, we establish the subdirect product representation theorem for those logics and then consider some more related results such as completeness. Thirdly, we consider the varieties theorem for them. Finally, we introduce an analogue of Mal’cev’s quasi-varieties theorem for algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • A computational glimpse at the Leibniz and Frege hierarchies.Tommaso Moraschini - 2018 - Annals of Pure and Applied Logic 169 (1):1-20.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Selfextensional logics with a distributive nearlattice term.Luciano J. González - 2019 - Archive for Mathematical Logic 58 (1-2):219-243.
    We define when a ternary term m of an algebraic language \ is called a distributive nearlattice term -term) of a sentential logic \. Distributive nearlattices are ternary algebras generalising Tarski algebras and distributive lattices. We characterise the selfextensional logics with a \-term through the interpretation of the DN-term in the algebras of the algebraic counterpart of the logics. We prove that the canonical class of algebras associated with a selfextensional logic with a \-term is a variety, and we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nikolaos Galatos.Hiroakira Ono - 2006 - Studia Logica 83 (1-3):1-32.
    Download  
     
    Export citation  
     
    Bookmark