Switch to: References

Add citations

You must login to add citations.
  1. Finite axiomatizability of logics of distributive lattices with negation.Sérgio Marcelino & Umberto Rivieccio - forthcoming - Logic Journal of the IGPL.
    This paper focuses on order-preserving logics defined from varieties of distributive lattices with negation, and in particular on the problem of whether these can be axiomatized by means Hilbert-style calculi that are finite. On the negative side, we provide a syntactic condition on the equational presentation of a variety that entails failure of finite axiomatizability for the corresponding logic. An application of this result is that the logic of all distributive lattices with negation is not finitely axiomatizable; we likewise establish (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Algebraic View of Super-Belnap Logics.Hugo Albuquerque, Adam Přenosil & Umberto Rivieccio - 2017 - Studia Logica 105 (6):1051-1086.
    The Belnap–Dunn logic is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt the point of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Leibniz-linked Pairs of Deductive Systems.Josep Maria Font & Ramon Jansana - 2011 - Studia Logica 99 (1-3):171-202.
    A pair of deductive systems (S,S’) is Leibniz-linked when S’ is an extension of S and on every algebra there is a map sending each filter of S to a filter of S’ with the same Leibniz congruence. We study this generalization to arbitrary deductive systems of the notion of the strong version of a protoalgebraic deductive system, studied in earlier papers, and of some results recently found for particular non-protoalgebraic deductive systems. The necessary examples and counterexamples found in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Pure Variable Inclusion Logics.Francesco Paoli, Michele Pra Baldi & Damian Szmuc - forthcoming - Logic and Logical Philosophy:1-22.
    The aim of this article is to discuss pure variable inclusion logics, that is, logical systems where valid entailments require that the propositional variables occurring in the conclusion are included among those appearing in the premises, or vice versa. We study the subsystems of Classical Logic satisfying these requirements and assess the extent to which it is possible to characterise them by means of a single logical matrix. In addition, we semantically describe both of these companions to Classical Logic in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Monotonic modal logics with a conjunction.Paula Menchón & Sergio Celani - 2021 - Archive for Mathematical Logic 60 (7):857-877.
    Monotone modal logics have emerged in several application areas such as computer science and social choice theory. Since many of the most studied selfextensional logics have a conjunction, in this paper we study some distributive extensions obtained from a semilattice based deductive system with monotonic modal operators, and we give them neighborhood and algebraic semantics. For each logic defined our main objective is to prove completeness with respect to its characteristic class of monotonic frames.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Deductive System of the Order of an Equationally Orderable Quasivariety.Ramon Jansana - 2016 - Studia Logica 104 (3):547-566.
    We consider the equationally orderable quasivarieties and associate with them deductive systems defined using the order. The method of definition of these deductive systems encompasses the definition of logics preserving degrees of truth we find in the research areas of substructural logics and mathematical fuzzy logic. We prove several general results, for example that the deductive systems so defined are finitary and that the ones associated with equationally orderable varieties are congruential.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Taking Degrees of Truth Seriously.Josep Maria Font - 2009 - Studia Logica 91 (3):383-406.
    This is a contribution to the discussion on the role of truth degrees in manyvalued logics from the perspective of abstract algebraic logic. It starts with some thoughts on the so-called Suszko’s Thesis (that every logic is two-valued) and on the conception of semantics that underlies it, which includes the truth-preserving notion of consequence. The alternative usage of truth values in order to define logics that preserve degrees of truth is presented and discussed. Some recent works studying these in the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Categorical Abstract Algebraic Logic: Referential π-Institutions.George Voutsadakis - 2015 - Bulletin of the Section of Logic 44 (1/2):33-51.
    Wojcicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of algebraic and matrix semantics of arbitrary sentential logics. A well-known theorem of Wojcicki asserts that a logic has a referential semantics if and only if it is selfextensional. Referential semantics was subsequently studied in detail by Malinowski and the concept of selfextensionality has played, more recently, an important role (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Strong Version of a Sentential Logic.Ramon Jansana, Josep Maria Font & Hugo Albuquerque - 2017 - Studia Logica 105 (4):703-760.
    This paper explores a notion of “the strong version” of a sentential logic S, initially defined in terms of the notion of a Leibniz filter, and shown to coincide with the logic determined by the matrices of S whose filter is the least S-filter in the algebra of the matrix. The paper makes a general study of this notion, which appears to unify under an abstract framework the relationships between many pairs of logics in the literature. The paradigmatic examples are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Implicational logics II: additional connectives and characterizations of semilinearity.Petr Cintula & Carles Noguera - 2016 - Archive for Mathematical Logic 55 (3-4):353-372.
    This is the continuation of the paper :417–446, 2010). We continue the abstract study of non-classical logics based on the kind of generalized implication connectives they possess and we focus on semilinear logics, i.e. those that are complete with respect to the class of models where the implication defines a linear order. We obtain general characterizations of semilinearity in terms of the intersection-prime extension property, the syntactical semilinearity metarule and the class of finitely subdirectly irreducible models. Moreover, we consider extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Countably Many Weakenings of Belnap–Dunn Logic.Minghui Ma & Yuanlei Lin - 2020 - Studia Logica 108 (2):163-198.
    Every Berman’s variety \ which is the subvariety of Ockham algebras defined by the equation \ and \) determines a finitary substitution invariant consequence relation \. A sequent system \ is introduced as an axiomatization of the consequence relation \. The system \ is characterized by a single finite frame \ under the frame semantics given for the formal language. By the duality between frames and algebras, \ can be viewed as a \-valued logic as it is characterized by a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On substructural logics preserving degrees of truth.Josep Maria Font - 2007 - Bulletin of the Section of Logic 36 (3/4):117-129.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Deterministic Weakening of Belnap–Dunn Logic.Minghui Ma & Yuanlei Lin - 2019 - Studia Logica 107 (2):283-312.
    A deterministic weakening \ of the Belnap–Dunn four-valued logic \ is introduced to formalize the acceptance and rejection of a proposition at a state in a linearly ordered informational frame with persistent valuations. The logic \ is formalized as a sequent calculus. The completeness and decidability of \ with respect to relational semantics are shown in terms of normal forms. From an algebraic perspective, the class of all algebras for \ is described, and found to be a subvariety of Berman’s (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Implicational (semilinear) logics I: a new hierarchy. [REVIEW]Petr Cintula & Carles Noguera - 2010 - Archive for Mathematical Logic 49 (4):417-446.
    In abstract algebraic logic, the general study of propositional non-classical logics has been traditionally based on the abstraction of the Lindenbaum-Tarski process. In this process one considers the Leibniz relation of indiscernible formulae. Such approach has resulted in a classification of logics partly based on generalizations of equivalence connectives: the Leibniz hierarchy. This paper performs an analogous abstract study of non-classical logics based on the kind of generalized implication connectives they possess. It yields a new classification of logics expanding Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Proof by Cases Property and its Variants in Structural Consequence Relations.Petr Cintula & Carles Noguera - 2013 - Studia Logica 101 (4):713-747.
    This paper is a contribution to the study of the rôle of disjunction inAlgebraic Logic. Several kinds of (generalized) disjunctions, usually defined using a suitable variant of the proof by cases property, were introduced and extensively studied in the literature mainly in the context of finitary logics. The goals of this paper are to extend these results to all logics, to systematize the multitude of notions of disjunction (both those already considered in the literature and those introduced in this paper), (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A New View of Effects in a Hilbert Space.Roberto Giuntini, Antonio Ledda & Francesco Paoli - 2016 - Studia Logica 104 (6):1145-1177.
    We investigate certain Brouwer-Zadeh lattices that serve as abstract counterparts of lattices of effects in Hilbert spaces under the spectral ordering. These algebras, called PBZ*-lattices, can also be seen as generalisations of orthomodular lattices and are remarkable for the collapse of three notions of “sharpness” that are distinct in general Brouwer-Zadeh lattices. We investigate the structure theory of PBZ*-lattices and their reducts; in particular, we prove some embedding results for PBZ*-lattices and provide an initial description of the lattice of PBZ*-varieties.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Algebraizable logics with a strong conjunction and their semi-lattice based companions.Ramon Jansana - 2012 - Archive for Mathematical Logic 51 (7-8):831-861.
    The best known algebraizable logics with a conjunction and an implication have the property that the conjunction defines a meet semi-lattice in the algebras of their algebraic counterpart. This property makes it possible to associate with them a semi-lattice based deductive system as a companion. Moreover, the order of the semi-lattice is also definable using the implication. This makes that the connection between the properties of the logic and the properties of its semi-lattice based companion is strong. We introduce a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (5 other versions)XIV Latin American Symposium on Mathematical Logic.Itala Maria Loffredo D'Ottaviano - 2009 - Bulletin of Symbolic Logic 15 (3):332-376.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logics with disjunction and proof by cases.San-min Wang & Petr Cintula - 2008 - Archive for Mathematical Logic 47 (5):435-446.
    This paper is a contribution to the general study of consequence relations which contain (definable) connective of “disjunction”. Our work is centered around the “proof by cases property”, we present several of its equivalent definitions, and show some interesting applications, namely in constructing axiomatic systems for intersections of logics and recognizing weakly implicative fuzzy logics among the weakly implicative ones.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Beyond Rasiowa's Algebraic Approach to Non-classical Logics.Josep Maria Font - 2006 - Studia Logica 82 (2):179-209.
    This paper reviews the impact of Rasiowa's well-known book on the evolution of algebraic logic during the last thirty or forty years. It starts with some comments on the importance and influence of this book, highlighting some of the reasons for this influence, and some of its key points, mathematically speaking, concerning the general theory of algebraic logic, a theory nowadays called Abstract Algebraic Logic. Then, a consideration of the diverse ways in which these key points can be generalized allows (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Paraconsistent and Paracomplete Logics Based on k-Cyclic Modal Pseudocomplemented De Morgan Algebras.Aldo Figallo-Orellano, Miguel Peréz-Gaspar & Juan Manuel Ramírez-Contreras - 2022 - Studia Logica 110 (5):1291-1325.
    The study of the theory of operators over modal pseudocomplemented De Morgan algebras was begun in papers [20] and [21]. In this paper, we introduce and study the class of modal pseudocomplemented De Morgan algebras enriched by a k-periodic automorphism -algebras). We denote by \ the automorphism where k is a positive integer. For \, the class coincides with the one studied in [20] where the automorphism works as a new unary operator which can be considered as a negation. In (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Canonical extensions for congruential logics with the deduction theorem.Mai Gehrke, Ramon Jansana & Alessandra Palmigiano - 2010 - Annals of Pure and Applied Logic 161 (12):1502-1519.
    We introduce a new and general notion of canonical extension for algebras in the algebraic counterpart of any finitary and congruential logic . This definition is logic-based rather than purely order-theoretic and is in general different from the definition of canonical extensions for monotone poset expansions, but the two definitions agree whenever the algebras in are based on lattices. As a case study on logics purely based on implication, we prove that the varieties of Hilbert and Tarski algebras are canonical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Selfextensional logics with a distributive nearlattice term.Luciano J. González - 2019 - Archive for Mathematical Logic 58 (1-2):219-243.
    We define when a ternary term m of an algebraic language \ is called a distributive nearlattice term -term) of a sentential logic \. Distributive nearlattices are ternary algebras generalising Tarski algebras and distributive lattices. We characterise the selfextensional logics with a \-term through the interpretation of the DN-term in the algebras of the algebraic counterpart of the logics. We prove that the canonical class of algebras associated with a selfextensional logic with a \-term is a variety, and we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark