Switch to: References

Citations of:

The Suszko operator. Part I

Studia Logica 74 (1-2):181 - 231 (2003)

Add citations

You must login to add citations.
  1. Selfextensional Logics with a Conjunction.Ramon Jansana - 2006 - Studia Logica 84 (1):63-104.
    A logic is selfextensional if its interderivability (or mutual consequence) relation is a congruence relation on the algebra of formulas. In the paper we characterize the selfextensional logics with a conjunction as the logics that can be defined using the semilattice order induced by the interpretation of the conjunction in the algebras of their algebraic counterpart. Using the charactrization we provide simpler proofs of several results on selfextensional logics with a conjunction obtained in [13] using Gentzen systems. We also obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Juxtaposition: A New Way to Combine Logics.Joshua Schechter - 2011 - Review of Symbolic Logic 4 (4):560-606.
    This paper develops a new framework for combining propositional logics, called "juxtaposition". Several general metalogical theorems are proved concerning the combination of logics by juxtaposition. In particular, it is shown that under reasonable conditions, juxtaposition preserves strong soundness. Under reasonable conditions, the juxtaposition of two consequence relations is a conservative extension of each of them. A general strong completeness result is proved. The paper then examines the philosophically important case of the combination of classical and intuitionist logics. Particular attention is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Deductive System of the Order of an Equationally Orderable Quasivariety.Ramon Jansana - 2016 - Studia Logica 104 (3):547-566.
    We consider the equationally orderable quasivarieties and associate with them deductive systems defined using the order. The method of definition of these deductive systems encompasses the definition of logics preserving degrees of truth we find in the research areas of substructural logics and mathematical fuzzy logic. We prove several general results, for example that the deductive systems so defined are finitary and that the ones associated with equationally orderable varieties are congruential.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Categorical Abstract Algebraic Logic: Referential π-Institutions.George Voutsadakis - 2015 - Bulletin of the Section of Logic 44 (1/2):33-51.
    Wojcicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of algebraic and matrix semantics of arbitrary sentential logics. A well-known theorem of Wojcicki asserts that a logic has a referential semantics if and only if it is selfextensional. Referential semantics was subsequently studied in detail by Malinowski and the concept of selfextensionality has played, more recently, an important role (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Poset of All Logics I: Interpretations and Lattice Structure.R. Jansana & T. Moraschini - 2021 - Journal of Symbolic Logic 86 (3):935-964.
    A notion of interpretation between arbitrary logics is introduced, and the poset$\mathsf {Log}$of all logics ordered under interpretability is studied. It is shown that in$\mathsf {Log}$infima of arbitrarily large sets exist, but binary suprema in general do not. On the other hand, the existence of suprema of sets of equivalential logics is established. The relations between$\mathsf {Log}$and the lattice of interpretability types of varieties are investigated.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Poset of All Logics III: Finitely Presentable Logics.Ramon Jansana & Tommaso Moraschini - 2020 - Studia Logica 109 (3):539-580.
    A logic in a finite language is said to be finitely presentable if it is axiomatized by finitely many finite rules. It is proved that binary non-indexed products of logics that are both finitely presentable and finitely equivalential are essentially finitely presentable. This result does not extend to binary non-indexed products of arbitrary finitely presentable logics, as shown by a counterexample. Finitely presentable logics are then exploited to introduce finitely presentable Leibniz classes, and to draw a parallel between the Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Admissible Rules and the Leibniz Hierarchy.James G. Raftery - 2016 - Notre Dame Journal of Formal Logic 57 (4):569-606.
    This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and significance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the nonalgebraizable fragments of relevance logic are considered.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Categorical abstract algebraic logic: The categorical Suszko operator.George Voutsadakis - 2007 - Mathematical Logic Quarterly 53 (6):616-635.
    Czelakowski introduced the Suszko operator as a basis for the development of a hierarchy of non-protoalgebraic logics, paralleling the well-known abstract algebraic hierarchy of protoalgebraic logics based on the Leibniz operator of Blok and Pigozzi. The scope of the theory of the Leibniz operator was recently extended to cover the case of, the so-called, protoalgebraic π-institutions. In the present work, following the lead of Czelakowski, an attempt is made at lifting parts of the theory of the Suszko operator to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categorical Abstract Algebraic Logic: Prealgebraicity and Protoalgebraicity.George Voutsadakis - 2007 - Studia Logica 85 (2):215-249.
    Two classes of π are studied whose properties are similar to those of the protoalgebraic deductive systems of Blok and Pigozzi. The first is the class of N-protoalgebraic π-institutions and the second is the wider class of N-prealgebraic π-institutions. Several characterizations are provided. For instance, N-prealgebraic π-institutions are exactly those π-institutions that satisfy monotonicity of the N-Leibniz operator on theory systems and N-protoalgebraic π-institutions those that satisfy monotonicity of the N-Leibniz operator on theory families. Analogs of the correspondence property of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Beyond Rasiowa's Algebraic Approach to Non-classical Logics.Josep Maria Font - 2006 - Studia Logica 82 (2):179-209.
    This paper reviews the impact of Rasiowa's well-known book on the evolution of algebraic logic during the last thirty or forty years. It starts with some comments on the importance and influence of this book, highlighting some of the reasons for this influence, and some of its key points, mathematically speaking, concerning the general theory of algebraic logic, a theory nowadays called Abstract Algebraic Logic. Then, a consideration of the diverse ways in which these key points can be generalized allows (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Categorical Abstract Algebraic Logic: Truth-Equational $pi$-Institutions.George Voutsadakis - 2015 - Notre Dame Journal of Formal Logic 56 (2):351-378.
    Finitely algebraizable deductive systems were introduced by Blok and Pigozzi to capture the essential properties of those deductive systems that are very tightly connected to quasivarieties of universal algebras. They include the equivalential logics of Czelakowski. Based on Blok and Pigozzi’s work, Herrmann defined algebraizable deductive systems. These are the equivalential deductive systems that are also truth-equational, in the sense that the truth predicate of the class of their reduced matrix models is explicitly definable by some set of unary equations. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Suszko operator relative to truth‐equational logics.Hugo Albuquerque - 2021 - Mathematical Logic Quarterly 67 (2):226-240.
    This note presents some new results from [1] about the Suszko operator and truth‐equational logics, following the works of Czelakowski [11] and Raftery [17]. It is proved that the Suszko operator relative to a truth‐equational logic preserves suprema and commutes with endomorphisms. Together with injectivity, proved by Raftery in [17], the Suszko operator relative to a truth‐equational logic is a structural representation, as defined in [15]. Furthermore, if is a quasivariety, then the Suszko operator relative to a truth‐equational logic is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Selfextensional logics with a distributive nearlattice term.Luciano J. González - 2019 - Archive for Mathematical Logic 58 (1-2):219-243.
    We define when a ternary term m of an algebraic language \ is called a distributive nearlattice term -term) of a sentential logic \. Distributive nearlattices are ternary algebras generalising Tarski algebras and distributive lattices. We characterise the selfextensional logics with a \-term through the interpretation of the DN-term in the algebras of the algebraic counterpart of the logics. We prove that the canonical class of algebras associated with a selfextensional logic with a \-term is a variety, and we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark