Citations of:
Arithmetic, Set Theory, Reduction and Explanation
Synthese 195 (11):50595089 (2018)
Add citations
You must login to add citations.


I discuss Steinhart’s argument against Benacerraf’s famous multiplereductions argument to the effect that numbers cannot be sets. Steinhart offers a mathematical argument according to which there is only one series of sets to which the natural numbers can be reduced, and thus attacks Benacerraf’s assumption that there are multiple reductions of numbers to sets. I will argue that Steinhart’s argument is problematic and should not be accepted. 

According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewingas explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this claim (...) 

Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...) 