Switch to: References

Add citations

You must login to add citations.
  1. Tradeoffs all the way down: Ethical abduction as a decision-making process for data-intensive technology development.Anissa Tanweer - 2022 - Big Data and Society 9 (1).
    Ample scholarship demonstrates that data-intensive technologies have the capacity to cause serious harm and that their developers are obliged to address ethics in their work. This ethnographic paper tells the story of data scientists attempting to instantiate a carefully considered ethical vision into a data infrastructure while balancing competing priorities, negotiating divergent interests, and wrestling with contrasting values. I use their story to develop the concept of “ethical abduction,” which I characterize as an exemplary process by which actors can intentionally (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Carceral algorithms and the history of control: An analysis of the Pennsylvania additive classification tool.Nathan C. Ryan, Darakhshan Mir, Swarup Dhar & Vanessa A. Massaro - 2022 - Big Data and Society 9 (1).
    Scholars have focused on algorithms used during sentencing, bail, and parole, but little work explores what we term “carceral algorithms” that are used during incarceration. This paper is focused on the Pennsylvania Additive Classification Tool used to classify prisoners’ custody levels while they are incarcerated. Algorithms that are used during incarceration warrant deeper attention by scholars because they have the power to enact the lived reality of the prisoner. The algorithm in this case determines the likelihood a person would endure (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The limitation of ethics-based approaches to regulating artificial intelligence: regulatory gifting in the context of Russia.Gleb Papyshev & Masaru Yarime - forthcoming - AI and Society:1-16.
    The effects that artificial intelligence (AI) technologies will have on society in the short- and long-term are inherently uncertain. For this reason, many governments are avoiding strict command and control regulations for this technology and instead rely on softer ethics-based approaches. The Russian approach to regulating AI is characterized by the prevalence of unenforceable ethical principles implemented via industry self-regulation. We analyze the emergence of the regulatory regime for AI in Russia to illustrate the limitations of this approach. The article (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Attitudinal Tensions in the Joint Pursuit of Explainable and Trusted AI.Devesh Narayanan & Zhi Ming Tan - 2023 - Minds and Machines 33 (1):55-82.
    It is frequently demanded that AI-based Decision Support Tools (AI-DSTs) ought to be both explainable to, and trusted by, those who use them. The joint pursuit of these two principles is ordinarily believed to be uncontroversial. In fact, a common view is that AI systems should be made explainable so that they can be trusted, and in turn, accepted by decision-makers. However, the moral scope of these two principles extends far beyond this particular instrumental connection. This paper argues that if (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conformity Assessments and Post-market Monitoring: A Guide to the Role of Auditing in the Proposed European AI Regulation.Jakob Mökander, Maria Axente, Federico Casolari & Luciano Floridi - 2022 - Minds and Machines 32 (2):241-268.
    The proposed European Artificial Intelligence Act (AIA) is the first attempt to elaborate a general legal framework for AI carried out by any major global economy. As such, the AIA is likely to become a point of reference in the larger discourse on how AI systems can (and should) be regulated. In this article, we describe and discuss the two primary enforcement mechanisms proposed in the AIA: the _conformity assessments_ that providers of high-risk AI systems are expected to conduct, and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Ethics-based auditing of automated decision-making systems: nature, scope, and limitations.Jakob Mökander, Jessica Morley, Mariarosaria Taddeo & Luciano Floridi - 2021 - Science and Engineering Ethics 27 (4):1–30.
    Important decisions that impact humans lives, livelihoods, and the natural environment are increasingly being automated. Delegating tasks to so-called automated decision-making systems can improve efficiency and enable new solutions. However, these benefits are coupled with ethical challenges. For example, ADMS may produce discriminatory outcomes, violate individual privacy, and undermine human self-determination. New governance mechanisms are thus needed that help organisations design and deploy ADMS in ways that are ethical, while enabling society to reap the full economic and social benefits of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Ethics-based auditing of automated decision-making systems: intervention points and policy implications.Jakob Mökander & Maria Axente - 2023 - AI and Society 38 (1):153-171.
    Organisations increasingly use automated decision-making systems (ADMS) to inform decisions that affect humans and their environment. While the use of ADMS can improve the accuracy and efficiency of decision-making processes, it is also coupled with ethical challenges. Unfortunately, the governance mechanisms currently used to oversee human decision-making often fail when applied to ADMS. In previous work, we proposed that ethics-based auditing (EBA)—that is, a structured process by which ADMS are assessed for consistency with relevant principles or norms—can (a) help organisations (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The paradoxical transparency of opaque machine learning.Felix Tun Han Lo - forthcoming - AI and Society:1-13.
    This paper examines the paradoxical transparency involved in training machine-learning models. Existing literature typically critiques the opacity of machine-learning models such as neural networks or collaborative filtering, a type of critique that parallels the black-box critique in technology studies. Accordingly, people in power may leverage the models’ opacity to justify a biased result without subjecting the technical operations to public scrutiny, in what Dan McQuillan metaphorically depicts as an “algorithmic state of exception”. This paper attempts to differentiate the black-box abstraction (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Black-Box Testing and Auditing of Bias in ADM Systems.Tobias D. Krafft, Marc P. Hauer & Katharina Zweig - 2024 - Minds and Machines 34 (2):1-31.
    For years, the number of opaque algorithmic decision-making systems (ADM systems) with a large impact on society has been increasing: e.g., systems that compute decisions about future recidivism of criminals, credit worthiness, or the many small decision computing systems within social networks that create rankings, provide recommendations, or filter content. Concerns that such a system makes biased decisions can be difficult to investigate: be it by people affected, NGOs, stakeholders, governmental testing and auditing authorities, or other external parties. Scientific testing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What ethics can say on artificial intelligence: Insights from a systematic literature review.Francesco Vincenzo Giarmoleo, Ignacio Ferrero, Marta Rocchi & Massimiliano Matteo Pellegrini - 2024 - Business and Society Review 129 (2):258-292.
    The abundance of literature on ethical concerns regarding artificial intelligence (AI) highlights the need to systematize, integrate, and categorize existing efforts through a systematic literature review. The article aims to investigate prevalent concerns, proposed solutions, and prominent ethical approaches within the field. Considering 309 articles from the beginning of the publications in this field up until December 2021, this systematic literature review clarifies what the ethical concerns regarding AI are, and it charts them into two groups: (i) ethical concerns that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algorithmic Decision-Making, Agency Costs, and Institution-Based Trust.Keith Dowding & Brad R. Taylor - 2024 - Philosophy and Technology 37 (2):1-22.
    Algorithm Decision Making (ADM) systems designed to augment or automate human decision-making have the potential to produce better decisions while also freeing up human time and attention for other pursuits. For this potential to be realised, however, algorithmic decisions must be sufficiently aligned with human goals and interests. We take a Principal-Agent (P-A) approach to the questions of ADM alignment and trust. In a broad sense, ADM is beneficial if and only if human principals can trust algorithmic agents to act (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Framework for Assurance Audits of Algorithmic Systems.Benjamin Lange, Khoa Lam, Borhane Hamelin, Davidovic Jovana, Shea Brown & Ali Hasan - forthcoming - Proceedings of the 2024 Acm Conference on Fairness, Accountability, and Transparency.
    An increasing number of regulations propose the notion of ‘AI audits’ as an enforcement mechanism for achieving transparency and accountability for artificial intelligence (AI) systems. Despite some converging norms around various forms of AI auditing, auditing for the purpose of compliance and assurance currently have little to no agreed upon practices, procedures, taxonomies, and standards. We propose the ‘criterion audit’ as an operationalizable compliance and assurance external audit framework. We model elements of this approach after financial auditing practices, and argue (...)
    Download  
     
    Export citation  
     
    Bookmark