Switch to: References

Add citations

You must login to add citations.
  1. Situated Counting.Peter Gärdenfors & Paula Quinon - 2020 - Review of Philosophy and Psychology 12 (4):721-744.
    We present a model of how counting is learned based on the ability to perform a series of specific steps. The steps require conceptual knowledge of three components: numerosity as a property of collections; numerals; and one-to-one mappings between numerals and collections. We argue that establishing one-to-one mappings is the central feature of counting. In the literature, the so-called cardinality principle has been in focus when studying the development of counting. We submit that identifying the procedural ability to count with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Philosophical Significance of Frege’s Constraint.Andrea Sereni - 2019 - Philosophia Mathematica 27 (2):244–275.
    Foundational projects disagree on whether pure and applied mathematics should be explained together. Proponents of unified accounts like neologicists defend Frege’s Constraint (FC), a principle demanding that an explanation of applicability be provided by mathematical definitions. I reconsider the philosophical import of FC, arguing that usual conceptions are biased by ontological assumptions. I explore more reasonable weaker variants — Moderate and Modest FC — arguing against common opinion that ante rem structuralism (and other) views can meet them. I dispel doubts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophy of Mathematics for the Masses : Extending the scope of the philosophy of mathematics.Stefan Buijsman - 2016 - Dissertation, Stockholm University
    One of the important discussions in the philosophy of mathematics, is that centered on Benacerraf’s Dilemma. Benacerraf’s dilemma challenges theorists to provide an epistemology and semantics for mathematics, based on their favourite ontology. This challenge is the point on which all philosophies of mathematics are judged, and clarifying how we might acquire mathematical knowledge is one of the main occupations of philosophers of mathematics. In this thesis I argue that this discussion has overlooked an important part of mathematics, namely mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indexed Natural Numbers in Mind: A Formal Model of the Basic Mature Number Competence. [REVIEW]Wojciech Krysztofiak - 2012 - Axiomathes 22 (4):433-456.
    The paper undertakes three interdisciplinary tasks. The first one consists in constructing a formal model of the basic arithmetic competence, that is, the competence sufficient for solving simple arithmetic story-tasks which do not require any mathematical mastery knowledge about laws, definitions and theorems. The second task is to present a generalized arithmetic theory, called the arithmetic of indexed numbers (INA). All models of the development of counting abilities presuppose the common assumption that our simple, folk arithmetic encoded linguistically in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is linguistic determinism an empirically testable hypothesis?Helen3 De Cruz - 2009 - Logique Et Analyse 52 (208):327-341.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mental Magnitudes and Increments of Mental Magnitudes.Matthew Katz - 2013 - Review of Philosophy and Psychology 4 (4):675-703.
    There is at present a lively debate in cognitive psychology concerning the origin of natural number concepts. At the center of this debate is the system of mental magnitudes, an innately given cognitive mechanism that represents cardinality and that performs a variety of arithmetical operations. Most participants in the debate argue that this system cannot be the sole source of natural number concepts, because they take it to represent cardinality approximately while natural number concepts are precise. In this paper, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The innateness hypothesis and mathematical concepts.Helen3 De Cruz & Johan De Smedt - 2010 - Topoi 29 (1):3-13.
    In historical claims for nativism, mathematics is a paradigmatic example of innate knowledge. Claims by contemporary developmental psychologists of elementary mathematical skills in human infants are a legacy of this. However, the connection between these skills and more formal mathematical concepts and methods remains unclear. This paper assesses the current debates surrounding nativism and mathematical knowledge by teasing them apart into two distinct claims. First, in what way does the experimental evidence from infants, nonhuman animals and neuropsychology support the nativist (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Re-establishing the distinction between numerosity, numerousness, and number in numerical cognition.César Frederico Dos Santos - 2022 - Philosophical Psychology 35 (8):1152-1180.
    In 1939, the influential psychophysicist S. S. Stevens proposed definitional distinctions between the terms ‘number,’ ‘numerosity,’ and ‘numerousness.’ Although the definitions he proposed were adopted by syeveral psychophysicists and experimental psychologists in the 1940s and 1950s, they were almost forgotten in the subsequent decades, making room for what has been described as a “terminological chaos” in the field of numerical cognition. In this paper, I review Stevens’s distinctions to help bring order to this alleged chaos and to shed light on (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Enculturation and the historical origins of number words and concepts.César Frederico dos Santos - 2021 - Synthese 199 (3-4):9257-9287.
    In the literature on enculturation—the thesis according to which higher cognitive capacities result from transformations in the brain driven by culture—numerical cognition is often cited as an example. A consequence of the enculturation account for numerical cognition is that individuals cannot acquire numerical competence if a symbolic system for numbers is not available in their cultural environment. This poses a problem for the explanation of the historical origins of numerical concepts and symbols. When a numeral system had not been created (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Counting and the ontogenetic origins of exact equality.Rose M. Schneider, Erik Brockbank, Roman Feiman & David Barner - 2022 - Cognition 218 (C):104952.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Counting to Infinity: Does Learning the Syntax of the Count List Predict Knowledge That Numbers Are Infinite?Junyi Chu, Pierina Cheung, Rose M. Schneider, Jessica Sullivan & David Barner - 2020 - Cognitive Science 44 (8):e12875.
    By around the age of 5½, many children in the United States judge that numbers never end, and that it is always possible to add 1 to a set. These same children also generally perform well when asked to label the quantity of a set after one object is added (e.g., judging that a set labeled “five” should now be “six”). These findings suggest that children have implicit knowledge of the “successor function”: Every natural number, n, has a successor, n (...)
    Download  
     
    Export citation  
     
    Bookmark