Switch to: References

Add citations

You must login to add citations.
  1. Rethinking Individuality in Quantum Mechanics.Nathan Moore - 2019 - Dissertation, University of Western Ontario
    One recent debate in philosophy of physics has centered whether quantum particles are individuals or not. The received view is that particles are not individuals and the standard methodology is to approach the question via the structure of quantum theory. I challenge both the received view and the standard methodology. I contend not only that the structure of quantum theory is not the right place to look for conditions of individuality that quantum particles may or may not satisfy, but also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Identical Quantum Particles as Distinguishable Objects.Dennis Dieks & Andrea Lubberdink - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (3):1-16.
    According to classical physics particles are basic building blocks of the world. These classical particles are distinguishable objects, individuated by unique combinations of physical properties. By contrast, in quantum mechanics the received view is that particles of the same kind are physically indistinguishable from each other and lack identity. This doctrine rests on the quantum mechanical symmetrization postulates together with the “factorist” assumption that each single particle is represented in exactly one factor space of the tensor product Hilbert space of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Objects or events?: Towards an ontology for quantum field theory.Andreas Bartels - 1999 - Philosophy of Science 66 (3):184.
    The recent work of Paul Teller and Sunny Auyang in the philosophy of Quantum Field Theory (QFT) has stimulated the search for the fundamental entities in this theory. In QFT, the classical notion of a particle collapses. The theory does not only exclude classical, i.e., spatiotemporally identifiable particles, but it makes particles of the same type conceptually indistinguishable. Teller and Auyang have proposed competing ersatz-ontologies to account for the 'loss of particles': field quanta vs. field events. Both ontologies, however, suffer (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Are quantum particles objects?Simon Saunders - 2006 - Analysis 66 (1):52-63.
    Particle indistinguishability has always been considered a purely quantum mechanical concept. In parallel, indistinguishable particles have been thought to be entities that are not properly speaking objects at all. I argue, to the contrary, that the concept can equally be applied to classical particles, and that in either case particles may (with certain exceptions) be counted as objects even though they are indistinguishable. The exceptions are elementary bosons (for example photons).
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • (1 other version)Identical Quantum Particles as Distinguishable Objects.Dennis Dieks & Andrea Lubberdink - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (3):259-274.
    According to classical physics _particles_ are basic building blocks of the world. These classical particles are distinguishable objects, individuated by unique combinations of physical properties. By contrast, in quantum mechanics the received view is that particles of the same kind (“identical particles”) are physically indistinguishable from each other and lack identity. This doctrine rests on the quantum mechanical (anti)symmetrization postulates together with the “factorist” assumption that each single particle is represented in exactly one factor space of the tensor product Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A note on the prehistory of indistinguishable particles.Daniela Monaldi - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (4):383-394.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How Classical Particles Emerge From the Quantum World.Dennis Dieks & Andrea Lubberdink - 2011 - Foundations of Physics 41 (6):1051-1064.
    The symmetrization postulates of quantum mechanics (symmetry for bosons, antisymmetry for fermions) are usually taken to entail that quantum particles of the same kind (e.g., electrons) are all in exactly the same state and therefore indistinguishable in the strongest possible sense. These symmetrization postulates possess a general validity that survives the classical limit, and the conclusion seems therefore unavoidable that even classical particles of the same kind must all be in the same state—in clear conflict with what we know about (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • On the significance of permutation symmetry.Nick Huggett - 1999 - British Journal for the Philosophy of Science 50 (3):325-347.
    There has been considerable recent philosophical debate over the implications of many particle quantum mechanics for the metaphysics of individuality (cf. Huggett [1997]). In this paper I look at things from a rather different perspective: by investigating the significance of permutation symmetry. I consider how various philosophical positions link up to the physical postulate of the indistinguishability of permuted states-permutation invariance-and how this postulate is used to explain quantum statistics. I offer an explanation of the statistics that relies on the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Classical Particle Indistinguishability, Precisely.James Wills - 2023 - British Journal for the Philosophy of Science 74 (2):335-358.
    I present a new perspective on the meaning of indistinguishability of classical particles. This leads to a solution to the problem in statistical mechanics of justifying the inclusion of a factor N! in a probability distribution over the phase space of N indistinguishable classical particles.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Gibbs paradox revisited.Dennis Dieks - 2011 - In Dennis Dieks, Wenceslao Gonzalo, Thomas Uebel, Stephan Hartmann & Marcel Weber (eds.), Explanation, Prediction, and Confirmation. Springer. pp. 367--377.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the explanation for quantum statistics.Simon Saunders - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):192-211.
    The concept of classical indistinguishability is analyzed and defended against a number of well-known criticisms, with particular attention to the Gibbs’paradox. Granted that it is as much at home in classical as in quantum statistical mechanics, the question arises as to why indistinguishability, in quantum mechanics but not in classical mechanics, forces a change in statistics. The answer, illustrated with simple examples, is that the equilibrium measure on classical phase space is continuous, whilst on Hilbert space it is discrete. The (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Symmetries and Paraparticles as a Motivation for Structuralism.Adam Caulton & Jeremy Butterfield - 2012 - British Journal for the Philosophy of Science 63 (2):233-285.
    This article develops an analogy proposed by Stachel between general relativity (GR) and quantum mechanics (QM) as regards permutation invariance. Our main idea is to overcome Pooley's criticism of the analogy by appeal to paraparticles. In GR, the equations are (the solution space is) invariant under diffeomorphisms permuting spacetime points. Similarly, in QM the equations are invariant under particle permutations. Stachel argued that this feature—a theory's ‘not caring which point, or particle, is which’—supported a structuralist ontology. Pooley criticizes this analogy: (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Particles, objects, and physics.Justin Pniower - unknown
    This thesis analyses the ontological nature of quantum particles. In it I argue that quantum particles, despite their indistinguishability, are objects in much the same way as classical particles. This similarity provides an important point of continuity between classical and quantum physics. I consider two notions of indistinguishability, that of indiscernibility and permutation symmetry. I argue that neither sort of indistinguishability undermines the identity of quantum particles. I further argue that, when we understand in distinguishability in terms of permutation symmetry, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations