Switch to: References

Add citations

You must login to add citations.
  1. The K -Degrees, Low for K Degrees,and Weakly Low for K Sets.Joseph S. Miller - 2009 - Notre Dame Journal of Formal Logic 50 (4):381-391.
    We call A weakly low for K if there is a c such that $K^A(\sigma)\geq K(\sigma)-c$ for infinitely many σ; in other words, there are infinitely many strings that A does not help compress. We prove that A is weakly low for K if and only if Chaitin's Ω is A-random. This has consequences in the K-degrees and the low for K (i.e., low for random) degrees. Furthermore, we prove that the initial segment prefix-free complexity of 2-random reals is infinitely (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Luzin’s (n) and randomness reflection.Arno Pauly, Linda Westrick & Liang Yu - 2022 - Journal of Symbolic Logic 87 (2):802-828.
    We show that a computable function $f:\mathbb R\rightarrow \mathbb R$ has Luzin’s property if and only if it reflects $\Pi ^1_1$ -randomness, if and only if it reflects $\Delta ^1_1$ -randomness, and if and only if it reflects ${\mathcal {O}}$ -Kurtz randomness, but reflecting Martin–Löf randomness or weak-2-randomness does not suffice. Here a function f is said to reflect a randomness notion R if whenever $f$ is R-random, then x is R-random as well. If additionally f is known to have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fixed-parameter decidability: Extending parameterized complexity analysis.Jouke Witteveen & Leen Torenvliet - 2016 - Mathematical Logic Quarterly 62 (6):596-607.
    Download  
     
    Export citation  
     
    Bookmark  
  • Relativizing chaitin's halting probability.Rod Downey, Denis R. Hirschfeldt, Joseph S. Miller & André Nies - 2005 - Journal of Mathematical Logic 5 (02):167-192.
    As a natural example of a 1-random real, Chaitin proposed the halting probability Ω of a universal prefix-free machine. We can relativize this example by considering a universal prefix-free oracle machine U. Let [Formula: see text] be the halting probability of UA; this gives a natural uniform way of producing an A-random real for every A ∈ 2ω. It is this operator which is our primary object of study. We can draw an analogy between the jump operator from computability theory (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Lowness for Kurtz randomness.Noam Greenberg & Joseph S. Miller - 2009 - Journal of Symbolic Logic 74 (2):665-678.
    We prove that degrees that are low for Kurtz randomness cannot be diagonally non-recursive. Together with the work of Stephan and Yu [16], this proves that they coincide with the hyperimmune-free non-DNR degrees, which are also exactly the degrees that are low for weak 1-genericity. We also consider Low(M, Kurtz), the class of degrees a such that every element of M is a-Kurtz random. These are characterised when M is the class of Martin-Löf random, computably random, or Schnorr random reals. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Asymptotic density and the Ershov hierarchy.Rod Downey, Carl Jockusch, Timothy H. McNicholl & Paul Schupp - 2015 - Mathematical Logic Quarterly 61 (3):189-195.
    We classify the asymptotic densities of the sets according to their level in the Ershov hierarchy. In particular, it is shown that for, a real is the density of an n‐c.e. set if and only if it is a difference of left‐ reals. Further, we show that the densities of the ω‐c.e. sets coincide with the densities of the sets, and there are ω‐c.e. sets whose density is not the density of an n‐c.e. set for any.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Agreement reducibility.Rachel Epstein & Karen Lange - 2020 - Mathematical Logic Quarterly 66 (4):448-465.
    We introduce agreement reducibility and highlight its major features. Given subsets A and B of, we write if there is a total computable function satisfying for all,.We shall discuss the central role plays in this reducibility and its connection to strong‐hyper‐hyper‐immunity. We shall also compare agreement reducibility to other well‐known reducibilities, in particular s1‐ and s‐reducibility. We came upon this reducibility while studying the computable reducibility of a class of equivalence relations on based on set‐agreement. We end by describing the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Completeness, Compactness, Effective Dimensions.Stephen Binns - 2013 - Mathematical Logic Quarterly 59 (3):206-218.
    Download  
     
    Export citation  
     
    Bookmark  
  • Π11‐Martin‐Löf randomness and Π11‐Solovay completeness.Claude Sureson - 2019 - Mathematical Logic Quarterly 65 (3):265-279.
    Developing an analogue of Solovay reducibility in the higher recursion setting, we show that results from the classical computably enumerable case can be extended to the new context.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computable randomness and betting for computable probability spaces.Jason Rute - 2016 - Mathematical Logic Quarterly 62 (4-5):335-366.
    Unlike Martin‐Löf randomness and Schnorr randomness, computable randomness has not been defined, except for a few ad hoc cases, outside of Cantor space. This paper offers such a definition (actually, several equivalent definitions), and further, provides a general method for abstracting “bit‐wise” definitions of randomness from Cantor space to arbitrary computable probability spaces. This same method is also applied to give machine characterizations of computable and Schnorr randomness for computable probability spaces, extending the previously known results. The paper contains a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Luzin’s (n) and randomness reflection.Arno Pauly, Linda Westrick & Liang Yu - 2020 - Journal of Symbolic Logic:1-27.
    We show that a computable function $f:\mathbb R\rightarrow \mathbb R$ has Luzin’s property if and only if it reflects $\Pi ^1_1$ -randomness, if and only if it reflects $\Delta ^1_1$ -randomness, and if and only if it reflects ${\mathcal {O}}$ -Kurtz randomness, but reflecting Martin–Löf randomness or weak-2-randomness does not suffice. Here a function f is said to reflect a randomness notion R if whenever $f$ is R-random, then x is R-random as well. If additionally f is known to have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Choice classes.Ahmet Çevik - 2016 - Mathematical Logic Quarterly 62 (6):563-574.
    Download  
     
    Export citation  
     
    Bookmark   1 citation