Switch to: References

Add citations

You must login to add citations.
  1. There is no fat orbit.Rod Downey & Leo Harrington - 1996 - Annals of Pure and Applied Logic 80 (3):277-289.
    We give a proof of a theorem of Harrington that there is no orbit of the lattice of recursively enumerable sets containing elements of each nonzero recursively enumerable degree. We also establish some degree theoretical extensions.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Splitting theorems in recursion theory.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 65 (1):1-106.
    A splitting of an r.e. set A is a pair A1, A2 of disjoint r.e. sets such that A1 A2 = A. Theorems about splittings have played an important role in recursion theory. One of the main reasons for this is that a splitting of A is a decomposition of A in both the lattice, , of recursively enumerable sets and in the uppersemilattice, R, of recursively enumerable degrees . Thus splitting theor ems have been used to obtain results about (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Some orbits for.Peter Cholak, Rod Downey & Eberhard Herrmann - 2001 - Annals of Pure and Applied Logic 107 (1-3):193-226.
    In this article we establish the existence of a number of new orbits in the automorphism group of the computably enumerable sets. The degree theoretical aspects of these orbits also are examined.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Some orbits for E.Peter Cholak, Rod Downey & Eberhard Herrmann - 2001 - Annals of Pure and Applied Logic 107 (1-3):193-226.
    In this article we establish the existence of a number of new orbits in the automorphism group of the computably enumerable sets. The degree theoretical aspects of these orbits also are examined.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Orbits of computably enumerable sets: low sets can avoid an upper cone.Russell Miller - 2002 - Annals of Pure and Applied Logic 118 (1-2):61-85.
    We investigate the orbit of a low computably enumerable set under automorphisms of the partial order of c.e. sets under inclusion. Given an arbitrary low c.e. set A and an arbitrary noncomputable c.e. set C, we use the New Extension Theorem of Soare to construct an automorphism of mapping A to a set B such that CTB. Thus, the orbit in of the low set A cannot be contained in the upper cone above C. This complements a result of Harrington, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The complexity of orbits of computably enumerable sets.Peter A. Cholak, Rodney Downey & Leo A. Harrington - 2008 - Bulletin of Symbolic Logic 14 (1):69 - 87.
    The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, ε, such that the question of membership in this orbit is ${\Sigma _1^1 }$ -complete. This result and proof have a number of nice corollaries: the Scott rank of ε is $\omega _1^{{\rm{CK}}}$ + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of ε; for all finite α ≥ 9, there is a properly $\Delta (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Definable incompleteness and Friedberg splittings.Russell Miller - 2002 - Journal of Symbolic Logic 67 (2):679-696.
    We define a property R(A 0 , A 1 ) in the partial order E of computably enumerable sets under inclusion, and prove that R implies that A 0 is noncomputable and incomplete. Moreover, the property is nonvacuous, and the A 0 and A 1 which we build satisfying R form a Friedberg splitting of their union A, with A 1 prompt and A promptly simple. We conclude that A 0 and A 1 lie in distinct orbits under automorphisms of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Degrees of Diagonal Sets and the Failure of the Analogue of a Theorem of Martin.Keng Meng Ng - 2009 - Notre Dame Journal of Formal Logic 50 (4):469-493.
    Semi-hyperhypersimple c.e. sets, also known as diagonals, were introduced by Kummer. He showed that by considering an analogue of hyperhypersimplicity, one could characterize the sets which are the Halting problem relative to arbitrary computable numberings. One could also consider half of splittings of maximal or hyperhypersimple sets and get another variant of maximality and hyperhypersimplicity, which are closely related to the study of automorphisms of the c.e. sets. We investigate the Turing degrees of these classes of c.e. sets. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nonhemimaximal degrees and the high/low hierarchy.Fang Chengling & Wu Guohua - 2012 - Journal of Symbolic Logic 77 (2):433-446.
    After showing the downwards density of nonhemimaximal degrees, Downey and Stob continued to prove that the existence of a low₂, but not low, nonhemimaximal degree, and their proof uses the fact that incomplete m-topped degrees are low₂ but not low. As commented in their paper, the construction of such a nonhemimaximal degree is actually a primitive 0''' argument. In this paper, we give another construction of such degrees, which is a standard 0''-argument, much simpler than Downey and Stob's construction mentioned (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Friedberg splittings of recursively enumerable sets.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 59 (3):175-199.
    A splitting A1A2 = A of an r.e. set A is called a Friedberg splitting if for any r.e. set W with W — A not r.e., W — Ai≠0 for I = 1,2. In an earlier paper, the authors investigated Friedberg splittings of maximal sets and showed that they formed an orbit with very interesting degree-theoretical properties. In the present paper we continue our investigations, this time analyzing Friedberg splittings and in particular their orbits and degrees for various classes (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations