Citations of:
Add citations
You must login to add citations.


Are there arguments in mathematics? Are there explanations in mathematics? Are there any connections between argument, proof and explanation? Highly controversial answers and arguments are reviewed. The main point is that in the case of a mathematical proof, the pragmatic criterion used to make a distinction between argument and explanation is likely to be insufficient for you may grant the conclusion of a proof but keep on thinking that the proof is not explanatory. 

The term ‘continuous’ in real analysis wasn’t given an adequate formal definition until 1817. However, important theorems about continuity were proven long before that. How was this possible? In this paper, I introduce and refine a proposed answer to this question, derived from the work of Frank Jackson, David Lewis and other proponents of the ‘Canberra plan’. In brief, the proposal is that before 1817 the meaning of the term ‘continuous’ was determined by a number of ‘platitudes’ which had some (...) 

In this paper, I introduce and defend a notion of analyticity for formal languages. I first uncover a crucial flaw in Timothy Williamson’s famous argument template against analyticity, when it is applied to sentences of formal mathematical languages. Williamson’s argument targets the popular idea that a necessary condition for analyticity is that whoever understands an analytic sentence assents to it. Williamson argues that for any given candidate analytic sentence, there can be people who understand that sentence and yet who fail (...) 