Citations of:
Add citations
You must login to add citations.


The term ‘continuous’ in real analysis wasn’t given an adequate formal definition until 1817. However, important theorems about continuity were proven long before that. How was this possible? In this paper, I introduce and refine a proposed answer to this question, derived from the work of Frank Jackson, David Lewis and other proponents of the ‘Canberra plan’. In brief, the proposal is that before 1817 the meaning of the term ‘continuous’ was determined by a number of ‘platitudes’ which had some (...) 

In this paper, I introduce and defend a notion of analyticity for formal languages. I first uncover a crucial flaw in Timothy Williamson’s famous argument template against analyticity, when it is applied to sentences of formal mathematical languages. Williamson’s argument targets the popular idea that a necessary condition for analyticity is that whoever understands an analytic sentence assents to it. Williamson argues that for any given candidate analytic sentence, there can be people who understand that sentence and yet who fail (...) 

This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the axioms of a dynamic provability logic, which augments GL with the modal μcalculus. Via correspondence results between modal logic and firstorder logic, a precise translation can then be provided between the notion of 'intuitionof', i.e., the cognitive phenomenal properties of thoughts, and the modal (...) 

This dissertation concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The dissertation demonstrates how phenomenal consciousness and gradational possibleworlds models in Bayesian perceptual psychology relate to epistemic modal space. The dissertation demonstrates, then, how epistemic modality relates to the computational theory of mind; metaphysical modality; deontic modality; logical modality; the types of mathematical modality; to the (...) 

Are there arguments in mathematics? Are there explanations in mathematics? Are there any connections between argument, proof and explanation? Highly controversial answers and arguments are reviewed. The main point is that in the case of a mathematical proof, the pragmatic criterion used to make a distinction between argument and explanation is likely to be insufficient for you may grant the conclusion of a proof but keep on thinking that the proof is not explanatory. 