Switch to: References

Citations of:

Einstein's Explanation of the Motion of Mercury's Perihelion

In Jeremy Butterfield & John Earman (eds.) (1977)

Add citations

You must login to add citations.
  1. Literal versus Careful Interpretations of Scientific Theories: The Vacuum Approach to the Problem of Motion in General Relativity.Dennis Lehmkuhl - 2017 - Philosophy of Science 84 (5):1202-1214.
    The problem of motion in general relativity is about how exactly the gravitational field equations, the Einstein equations, are related to the equations of motion of material bodies subject to gravitational fields. This article compares two approaches to derive the geodesic motion of matter from the field equations: the ‘T approach’ and the ‘vacuum approach’. The latter approach has been dismissed by philosophers of physics because it apparently represents material bodies by singularities. I argue that a careful interpretation of the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Einstein’s First Systematic Exposition of General Relativity.Michel Janssen - unknown
    This paper will serve as the editorial note on Einstein's 1916 review article on general relativity in a planned volume with all of Einstein's papers in Annalen der Physik. It summarizes much of my other work on history of general relativity and draws heavily on the annotation of Einstein's writings and correspondence on general relativity for Vols. 4, 7, and 8 of the Einstein edition.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Prediction versus accommodation and the risk of overfitting.Christopher Hitchcock & Elliott Sober - 2004 - British Journal for the Philosophy of Science 55 (1):1-34.
    an observation to formulate a theory, it is no surprise that the resulting theory accurately captures that observation. However, when the theory makes a novel prediction—when it predicts an observation that was not used in its formulation—this seems to provide more substantial confirmation of the theory. This paper presents a new approach to the vexed problem of understanding the epistemic difference between prediction and accommodation. In fact, there are several problems that need to be disentangled; in all of them, the (...)
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Outline of a dynamical inferential conception of the application of mathematics.Tim Räz & Tilman Sauer - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 49:57-72.
    We outline a framework for analyzing episodes from the history of science in which the application of mathematics plays a constitutive role in the conceptual development of empirical sciences. Our starting point is the inferential conception of the application of mathematics, recently advanced by Bueno and Colyvan. We identify and discuss some systematic problems of this approach. We propose refinements of the inferential conception based on theoretical considerations and on the basis of a historical case study. We demonstrate the usefulness (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)History of Science and the Material Theory of Induction: Einstein’s Quanta, Mercury’s Perihelion.John D. Norton - 2007 - European Journal for Philosophy of Science 1 (1):3-27.
    The use of the material theory of induction to vindicate a scientist's claims of evidential warrant is illustrated with the cases of Einstein's thermodynamic argument for light quanta of 1905 and his recovery of the anomalous motion of Mercury from general relativity in 1915. In a survey of other accounts of inductive inference applied to these examples, I show that, if it is to succeed, each account must presume the same material facts as the material theory and, in addition, some (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Einstein׳s physical strategy, energy conservation, symmetries, and stability: “But Grossmann & I believed that the conservation laws were not satisfied”.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 54 (C):52-72.
    Recent work on the history of General Relativity by Renn, Sauer, Janssen et al. shows that Einstein found his field equations partly by a physical strategy including the Newtonian limit, the electromagnetic analogy, and energy conservation. Such themes are similar to those later used by particle physicists. How do Einstein's physical strategy and the particle physics derivations compare? What energy-momentum complex did he use and why? Did Einstein tie conservation to symmetries, and if so, to which? How did his work (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • `Nature is the Realisation of the Simplest Conceivable Mathematical Ideas': Einstein and the Canon of Mathematical Simplicity.John D. Norton - 2000 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 31 (2):135-170.
    Einstein proclaimed that we could discover true laws of nature by seeking those with the simplest mathematical formulation. He came to this viewpoint later in his life. In his early years and work he was quite hostile to this idea. Einstein did not develop his later Platonism from a priori reasoning or aesthetic considerations. He learned the canon of mathematical simplicity from his own experiences in the discovery of new theories, most importantly, his discovery of general relativity. Through his neglect (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • A Conjecture on Einstein, the Independent Reality of Spacetime Coordinate Systems and the Disaster of 1913.John D. Norton - 1982 - In John Norton (ed.).
    Two fundamental errors led Einstein to reject generally covariant gravitational field equations for over two years as he was developing his general theory of relativity. The first is well known in the literature. It was the presumption that weak, static gravitational fields must be spatially flat and a corresponding assumption about his weak field equations. I conjecture that a second hitherto unrecognized error also defeated Einstein's efforts. The same error, months later, allowed the hole argument to convince Einstein that all (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations