Switch to: References

Citations of:

Superselection Rules for Philosophers

Erkenntnis 69 (3):377-414 (2008)

Add citations

You must login to add citations.
  1. On entanglement as a relation.Enrico Cinti, Alberto Corti & Marco Sanchioni - 2022 - European Journal for Philosophy of Science 12 (1):1-29.
    This paper aims to characterise properly entanglement as an external relation obtaining between multiple quantum degrees of freedom. In particular, we argue that the entanglement relation is a unique relation fully characterised by mutual information, i.e. a quantity standardly used as a measure of entanglement. This analysis leads us to propose a new metaphysical account of entanglement, which we call Relational Entanglement Tesseract. Such an account characterises entanglement for both bipartite and multipartite cases, and, at the same time, it satisfies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Antimatter.David John Baker & Hans Halvorson - 2010 - British Journal for the Philosophy of Science 61 (1):93-121.
    The nature of antimatter is examined in the context of algebraic quantum field theory. It is shown that the notion of antimatter is more general than that of antiparticles. Properly speaking, then, antimatter is not matter made up of antiparticles—rather, antiparticles are particles made up of antimatter. We go on to discuss whether the notion of antimatter is itself completely general in quantum field theory. Does the matter–antimatter distinction apply to all field theoretic systems? The answer depends on which of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Reversing the arrow of time.Bryan W. Roberts - 2022 - Cambridge: Cambridge University Press.
    'The arrow of time' refers to the curious asymmetry that distinguishes the future from the past. Reversing the Arrow of Time argues that there is an intimate link between the symmetries of 'time itself' and time reversal symmetry in physical theories, which has wide-ranging implications for both physics and its philosophy. This link helps to clarify how we can learn about the symmetries of our world, how to understand the relationship between symmetries and what is real, and how to overcome (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Explaining Universality: Infinite Limit Systems in the Renormalization Group Method.Jingyi Wu - 2021 - Synthese (5-6):14897-14930.
    I analyze the role of infinite idealizations used in the renormalization group (RG hereafter) method in explaining universality across microscopically different physical systems in critical phenomena. I argue that despite the reference to infinite limit systems such as systems with infinite correlation lengths during the RG process, the key to explaining universality in critical phenomena need not involve infinite limit systems. I develop my argument by introducing what I regard as the explanatorily relevant property in RG explanations: linearization* property; I (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infinite idealizations in physics.Elay Shech - 2018 - Philosophy Compass 13 (9):e12514.
    In this essay, I provide an overview of the debate on infinite and essential idealizations in physics. I will first present two ostensible examples: phase transitions and the Aharonov– Bohm effect. Then, I will describe the literature on the topic as a debate between two positions: Essentialists claim that idealizations are essential or indispensable for scientific accounts of certain physical phenomena, while dispensabilists maintain that idealizations are dispensable from mature scientific theory. I will also identify some attempts at finding a (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov–Bohm effect.Shech Elay - 2018 - Synthese 195 (11):4839-4863.
    Two approaches to understanding the idealizations that arise in the Aharonov–Bohm effect are presented. It is argued that a common topological approach, which takes the non-simply connected electron configuration space to be an essential element in the explanation and understanding of the effect, is flawed. An alternative approach is outlined. Consequently, it is shown that the existence and uniqueness of self-adjoint extensions of symmetric operators in quantum mechanics have important implications for philosophical issues. Also, the alleged indispensable explanatory role of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A (Strictly) Contemporary Perspective on Trans-Planckian Censorship.Mike D. Schneider - 2022 - Foundations of Physics 52 (4):1-21.
    I critically discuss a controversial ‘trans-Planckian censorship’ conjecture, which has recently been introduced to researchers working at the intersection of fundamental physics and cosmology. My focus explicitly avoids any appeals to contingent research within string theory or regarding the more general gravitational ‘swampland’. Rather, I concern myself with the conjecture’s foundations in our current, well-trodden physics of quantized fields, spacetime, and gravity. In doing so, I locate what exactly within trans-Planckian censorship amounts to a departure from current physics—identifying what is, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Primitive ontology and quantum field theory.Vincent Lam - 2015 - European Journal for Philosophy of Science 5 (3):387-397.
    Primitive ontology is a recently much discussed approach to the ontology of quantum theory according to which the theory is ultimately about entities in 3-dimensional space and their temporal evolution. This paper critically discusses the primitive ontologies that have been suggested within the Bohmian approach to quantum field theory in the light of the existence of unitarily inequivalent representations. These primitive ontologies rely either on a Fock space representation or a wave functional representation, which are strictly speaking unambiguously available only (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Two quantum logics of indeterminacy.Samuel C. Fletcher & David E. Taylor - 2021 - Synthese 199 (5-6):13247-13281.
    We implement a recent characterization of metaphysical indeterminacy in the context of orthodox quantum theory, developing the syntax and semantics of two propositional logics equipped with determinacy and indeterminacy operators. These logics, which extend a novel semantics for standard quantum logic that accounts for Hilbert spaces with superselection sectors, preserve different desirable features of quantum logic and logics of indeterminacy. In addition to comparing the relative advantages of the two, we also explain how each logic answers Williamson’s challenge to any (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum indeterminacy and the eigenstate-eigenvalue link.Samuel C. Fletcher & David E. Taylor - 2021 - Synthese 199 (3-4):1-32.
    Can quantum theory provide examples of metaphysical indeterminacy, indeterminacy that obtains in the world itself, independently of how one represents the world in language or thought? We provide a positive answer assuming just one constraint of orthodox quantum theory: the eigenstate-eigenvalue link. Our account adds a modal condition to preclude spurious indeterminacy in the presence of superselection sectors. No other extant account of metaphysical indeterminacy in quantum theory meets these demands.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Unitary inequivalence in classical systems.Benjamin Feintzeig - 2016 - Synthese 193 (9).
    Ruetsche argues that a problem of unitarily inequivalent representations arises in quantum theories with infinitely many degrees of freedom. I provide an algebraic formulation of classical field theories and show that unitarily inequivalent representations arise there as well. I argue that the classical case helps us rule out one possible response to the problem of unitarily inequivalent representations called Hilbert Space Conservatism.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Reductive Explanation and the Construction of Quantum Theories.Benjamin H. Feintzeig - 2022 - British Journal for the Philosophy of Science 73 (2):457-486.
    I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states. 1Introduction2Background2.1 Physical states2.2 Reductive explanations3The Proposed ‘Correspondence Principle’4Example: Regularity5Example: Symmetry-Invariance6Conclusion: Heuristics and Discovery.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some Puzzles and Unresolved Issues About Quantum Entanglement.John Earman - 2015 - Erkenntnis 80 (2):303-337.
    Schrödinger averred that entanglement is the characteristic trait of quantum mechanics. The first part of this paper is simultaneously an exploration of Schrödinger’s claim and an investigation into the distinction between mere entanglement and genuine quantum entanglement. The typical discussion of these matters in the philosophical literature neglects the structure of the algebra of observables, implicitly assuming a tensor product structure of the simple Type I factor algebras used in ordinary Quantum Mechanics . This limitation is overcome by adopting the (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Quantum jumps, superpositions, and the continuous evolution of quantum states.Rainer Dick - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:115-125.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Consciousness and the Collapse of the Wave Function.David J. Chalmers & Kelvin J. McQueen - 2022 - In Shan Gao (ed.), Consciousness and Quantum Mechanics. Oxford University Press.
    Does consciousness collapse the quantum wave function? This idea was taken seriously by John von Neumann and Eugene Wigner but is now widely dismissed. We develop the idea by combining a mathematical theory of consciousness (integrated information theory) with an account of quantum collapse dynamics (continuous spontaneous localization). Simple versions of the theory are falsified by the quantum Zeno effect, but more complex versions remain compatible with empirical evidence. In principle, versions of the theory can be tested by experiments with (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations