Switch to: References

Add citations

You must login to add citations.
  1. The justification of probability measures in statistical mechanics.Kevin Davey - 2008 - Philosophy of Science 75 (1):28-44.
    According to a standard view of the second law of thermodynamics, our belief in the second law can be justified by pointing out that low-entropy macrostates are less probable than high-entropy macrostates, and then noting that a system in an improbable state will tend to evolve toward a more probable state. I would like to argue that this justification of the second law is unhelpful at best and wrong at worst, and will argue that certain puzzles sometimes associated with the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Non-equilibrium thermodynamics and the free energy principle in biology.Matteo Colombo & Patricia Palacios - 2021 - Biology and Philosophy 36 (5):1-26.
    According to the free energy principle, life is an “inevitable and emergent property of any random dynamical system at non-equilibrium steady state that possesses a Markov blanket” :20130475, 2013). Formulating a principle for the life sciences in terms of concepts from statistical physics, such as random dynamical system, non-equilibrium steady state and ergodicity, places substantial constraints on the theoretical and empirical study of biological systems. Thus far, however, the physics foundations of the free energy principle have received hardly any attention. (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Degeneration and Entropy.Eugene Y. S. Chua - 2022 - Kriterion - Journal of Philosophy 36 (2):123-155.
    [Accepted for publication in Lakatos's Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, special issue of Kriterion: Journal of Philosophy. Edited by S. Nagler, H. Pilin, and D. Sarikaya.] Lakatos’s analysis of progress and degeneration in the Methodology of Scientific Research Programmes is well-known. Less known, however, are his thoughts on degeneration in Proofs and Refutations. I propose and motivate two new criteria for degeneration based on the discussion in Proofs and Refutations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The ergodic hierarchy, randomness and Hamiltonian chaos.Joseph Berkovitz, Roman Frigg & Fred Kronz - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (4):661-691.
    Various processes are often classified as both deterministic and random or chaotic. The main difficulty in analysing the randomness of such processes is the apparent tension between the notions of randomness and determinism: what type of randomness could exist in a deterministic process? Ergodic theory seems to offer a particularly promising theoretical tool for tackling this problem by positing a hierarchy, the so-called ‘ergodic hierarchy’, which is commonly assumed to provide a hierarchy of increasing degrees of randomness. However, that notion (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Introduction.Yemima Ben-Menahem & Itamar Pitowsky - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):503-510.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Introduction.Yemima Ben-Menahem & Itamar Pitowsky - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):503-510.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Chaos out of order: Quantum mechanics, the correspondence principle and chaos.Gordon Belot & John Earman - 1997 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 28 (2):147-182.
    A vast amount of ink has been spilled in both the physics and the philosophy literature on the measurement problem in quantum mechanics. Important as it is, this problem is but one aspect of the more general issue of how, if at all, classical properties can emerge from the quantum descriptions of physical systems. In this paper we will study another aspect of the more general issue-the emergence of classical chaos-which has been receiving increasing attention from physicists but which has (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Why equilibrium statistical mechanics works: Universality and the renormalization group.Robert W. Batterman - 1998 - Philosophy of Science 65 (2):183-208.
    Discussions of the foundations of Classical Equilibrium Statistical Mechanics (SM) typically focus on the problem of justifying the use of a certain probability measure (the microcanonical measure) to compute average values of certain functions. One would like to be able to explain why the equilibrium behavior of a wide variety of distinct systems (different sorts of molecules interacting with different potentials) can be described by the same averaging procedure. A standard approach is to appeal to ergodic theory to justify this (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • On the tension between ontology and epistemology in quantum probabilities.Amit Hagar - 2017 - In Olimpia Lombardi, Sebastian Fortin, Federico Holik & Cristian López (eds.), What is Quantum Information? New York, NY: CUP. pp. 147-178.
    For many among the scientifically informed public, and even among physicists, Heisenberg's uncertainty principle epitomizes quantum mechanics. Nevertheless, more than 86 years after its inception, there is no consensus over the interpretation, scope, and validity of this principle. The aim of this chapter is to offer one such interpretation, the traces of which may be found already in Heisenberg's letters to Pauli from 1926, and in Dirac's anticipation of Heisenberg's uncertainty relations from 1927, that stems form the hypothesis of finite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining the thermodynamic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Equilibrium in Boltzmannian Statistical Mechanics.Roman Frigg & Charlotte Werndl - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Equilibrium in Gibbsian Statistical Mechanics.Roman Frigg & Charlotte Werndl - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Response to the Comment on ‘Conjectures on exact solution of three-dimensional simple orthorhombic Ising lattices’.Z. D. Zhang - 2009 - Philosophical Magazine 89 (9):765-768.
    Download  
     
    Export citation  
     
    Bookmark  
  • Epsilon-ergodicity and the success of equilibrium statistical mechanics.Peter B. M. Vranas - 1998 - Philosophy of Science 65 (4):688-708.
    Why does classical equilibrium statistical mechanics work? Malament and Zabell (1980) noticed that, for ergodic dynamical systems, the unique absolutely continuous invariant probability measure is the microcanonical. Earman and Rédei (1996) replied that systems of interest are very probably not ergodic, so that absolutely continuous invariant probability measures very distant from the microcanonical exist. In response I define the generalized properties of epsilon-ergodicity and epsilon-continuity, I review computational evidence indicating that systems of interest are epsilon-ergodic, I adapt Malament and Zabell’s (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Reconsidering the concept of equilibrium in classical statistical mechanics.Janneke van Lith - 1999 - Philosophy of Science 66 (3):118.
    In the usual procedure of deriving equilibrium thermodynamics from classical statistical mechanics, Gibbsian fine-grained entropy is taken as the analogue of thermodynamical entropy. However, it is well known that the fine-grained entropy remains constant under the Hamiltonian flow. In this paper it is argued that we need not search for alternatives for fine-grained entropy, nor do we have to reject Hamiltonian dynamics, in order to solve the problem of the constancy of fine-grained entropy and, more generally, to account for the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Ergodic theory, interpretations of probability and the foundations of statistical mechanics.Janneke van Lith - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):581--94.
    The traditional use of ergodic theory in the foundations of equilibrium statistical mechanics is that it provides a link between thermodynamic observables and microcanonical probabilities. First of all, the ergodic theorem demonstrates the equality of microcanonical phase averages and infinite time averages (albeit for a special class of systems, and up to a measure zero set of exceptions). Secondly, one argues that actual measurements of thermodynamic quantities yield time averaged quantities, since measurements take a long time. The combination of these (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Nonreductive Physics.Mariam Thalos - 2006 - Synthese 149 (1):133-178.
    This paper documents a wide range of nonreductive scientific treatments of phenomena in the domain of physics. These treatments strongly resist characterization as explanations of macrobehavior exclusively in terms of behavior of microconstituents. For they are treatments in which macroquantities are cast in the role of genuine and irreducible degrees of freedom. One is driven into reductionism when one is not cultivated to possess an array of distinctions rich enough to let things be what they are. In contrast, making the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Gases in Boxes: A Reply to Davey on the Justification of the Probability Measure in Boltzmannian Statistical Mechanics.Elay Shech - 2013 - Philosophy of Science 80 (4):593-605.
    Kevin Davey claims that the justification of the second law of thermodynamics as it is conveyed by the “standard story” of statistical mechanics, roughly speaking, that lowentropy microstates tend to evolve to high-entropy microstates, is “unhelpful at best and wrong at worst.” In reply, I demonstrate that Davey’s argument for rejecting the standard story commits him to a form of skepticism that is more radical than the position he claims to be stating and that Davey places unreasonable demands on the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Foundation of statistical mechanics: The auxiliary hypotheses.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12464.
    Statistical mechanics is the name of the ongoing attempt to explain and predict certain phenomena, above all those described by thermodynamics on the basis of the fundamental theories of physics, in particular mechanics, together with certain auxiliary assumptions. In another paper in this journal, Foundations of statistical mechanics: Mechanics by itself, I have shown that some of the thermodynamic regularities, including the probabilistic ones, can be described in terms of mechanics by itself. But in order to prove those regularities, in (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • In Search of the Holy Grail: How to Reduce the Second Law of Thermodynamics.Katie Robertson - 2022 - British Journal for the Philosophy of Science 73 (4):987-1020.
    The search for the statistical mechanical underpinning of thermodynamic irreversibility has so far focussed on the spontaneous approach to equilibrium. But this is the search for the underpinning of what Brown and Uffink have dubbed the ‘minus first law’ of thermodynamics. In contrast, the second law tells us that certain interventions on equilibrium states render the initial state ‘irrecoverable’. In this article, I discuss the unusual nature of processes in thermodynamics, and the type of irreversibility that the second law embodies. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the Tension Between Physics and Mathematics.Miklós Rédei - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (3):411-425.
    Because of the complex interdependence of physics and mathematics their relation is not free of tensions. The paper looks at how the tension has been perceived and articulated by some physicists, mathematicians and mathematical physicists. Some sources of the tension are identified and it is claimed that the tension is both natural and fruitful for both physics and mathematics. An attempt is made to explain why mathematical precision is typically not welcome in physics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Information-Theoretic Statistical Mechanics without Landauer’s Principle.Daniel Parker - 2011 - British Journal for the Philosophy of Science 62 (4):831-856.
    This article distinguishes two different senses of information-theoretic approaches to statistical mechanics that are often conflated in the literature: those relating to the thermodynamic cost of computational processes and those that offer an interpretation of statistical mechanics where the probabilities are treated as epistemic. This distinction is then investigated through Earman and Norton’s ([1999]) ‘sound’ and ‘profound’ dilemma for information-theoretic exorcisms of Maxwell’s demon. It is argued that Earman and Norton fail to countenance a ‘sound’ information-theoretic interpretation and this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Had We But World Enough, and Time... But We Don’t!: Justifying the Thermodynamic and Infinite-Time Limits in Statistical Mechanics.Patricia Palacios - 2018 - Foundations of Physics 48 (5):526-541.
    In this paper, I compare the use of the thermodynamic limit in the theory of phase transitions with the infinite-time limit in the explanation of equilibrium statistical mechanics. In the case of phase transitions, I will argue that the thermodynamic limit can be justified pragmatically since the limit behavior also arises before we get to the limit and for values of N that are physically significant. However, I will contend that the justification of the infinite-time limit is less straightforward. In (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • An empirical approach to symmetry and probability.Jill North - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (1):27-40.
    We often use symmetries to infer outcomes’ probabilities, as when we infer that each side of a fair coin is equally likely to come up on a given toss. Why are these inferences successful? I argue against answering this with an a priori indifference principle. Reasons to reject that principle are familiar, yet instructive. They point to a new, empirical explanation for the success of our probabilistic predictions. This has implications for indifference reasoning in general. I argue that a priori (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Boltzmann and Gibbs: An attempted reconciliation.D. A. Lavis - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):245-273.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Boltzmann, Gibbs, and the concept of equilibrium.David A. Lavis - 2008 - Philosophy of Science 75 (5):682-696.
    The Boltzmann and Gibbs approaches to statistical mechanics have very different definitions of equilibrium and entropy. The problems associated with this are discussed and it is suggested that they can be resolved, to produce a version of statistical mechanics incorporating both approaches, by redefining equilibrium not as a binary property but as a continuous property measured by the Boltzmann entropy and by introducing the idea of thermodynamic-like behaviour for the Boltzmann entropy. The Kac ring model is used as an example (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Quantum decoherence and the approach to equilibrium.Meir Hemmo & Orly Shenker - 2003 - Philosophy of Science 70 (2):330-358.
    We discuss a recent proposal by Albert (1994a; 1994b; 2000, ch. 7) to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wave function by Ghirardi, Rimini, and Weber (1986). We propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard quantum mechanical models of environmental decoherence of open systems (e.g., Joos and Zeh 1985; Zurek and Paz 1994). This paper presents the two approaches (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Discussion: The Foundations of Statistical Mechanics—Questions and Answers.Amit Hagar - 2005 - Philosophy of Science 72 (3):468-478.
    Huw Price (1996, 2002, 2003) argues that causal-dynamical theories that aim to explain thermodynamic asymmetry in time are misguided. He points out that in seeking a dynamical factor responsible for the general tendency of entropy to increase, these approaches fail to appreciate the true nature of the problem in the foundations of statistical mechanics (SM). I argue that it is Price who is guilty of misapprehension of the issue at stake. When properly understood, causal-dynamical approaches in the foundations of SM (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Active Fault‐Tolerant Quantum Error Correction: The Curse of the Open System.Amit Hagar - 2009 - Philosophy of Science 76 (4):506-535.
    Relying on the universality of quantum mechanics and on recent results known as the “threshold theorems,” quantum information scientists deem the question of the feasibility of large‐scale, fault‐tolerant, and computationally superior quantum computers as purely technological. Reconstructing this question in statistical mechanical terms, this article suggests otherwise by questioning the physical significance of the threshold theorems. The skepticism it advances is neither too strong (hence is consistent with the universality of quantum mechanics) nor too weak (hence is independent of technological (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Typicality and the approach to equilibrium in Boltzmannian statistical mechanics.Roman Frigg - 2009 - Philosophy of Science 76 (5):997-1008.
    An important contemporary version of Boltzmannian statistical mechanics explains the approach to equilibrium in terms of typicality. The problem with this approach is that it comes in different versions, which are, however, not recognized as such and not clearly distinguished. This article identifies three different versions of typicality‐based explanations of thermodynamic‐like behavior and evaluates their respective successes. The conclusion is that the first two are unsuccessful because they fail to take the system's dynamics into account. The third, however, is promising. (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Chance in Boltzmannian Statistical Mechanics.Roman Frigg - 2008 - Philosophy of Science 75 (5):670-681.
    Consider a gas that is adiabatically isolated from its environment and confined to the left half of a container. Then remove the wall separating the two parts. The gas will immediately start spreading and soon be evenly distributed over the entire available space. The gas has approached equilibrium. Thermodynamics (TD) characterizes this process in terms of an increase of thermodynamic entropy, which attains its maximum value at equilibrium. The second law of thermodynamics captures the irreversibility of this process by positing (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Explaining Thermodynamic-Like Behavior in Terms of Epsilon-Ergodicity.Roman Frigg & Charlotte Werndl - 2011 - Philosophy of Science 78 (4):628-652.
    Gases reach equilibrium when left to themselves. Why do they behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the systems have to be ergodic. This answer has been criticised on different grounds and is now widely regarded as flawed. In this paper we argue that some of the main arguments against Boltzmann's answer, in particular, arguments based on the KAM-theorem and the Markus-Meyer theorem, are beside the point. We then argue that something (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Can somebody please say what Gibbsian statistical mechanics says?Roman Frigg & Charlotte Werndl - 2018 - British Journal for the Philosophy of Science:1-27.
    Gibbsian statistical mechanics (GSM) is the most widely used version of statistical mechanics among working physicists. Yet a closer look at GSM reveals that it is unclear what the theory actually says and how it bears on experimental practice. The root cause of the difficulties is the status of the Averaging Principle, the proposition that what we observe in an experiment is the ensemble average of a phase function. We review different stances toward this principle, and eventually present a coherent (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Partial Traces in Decoherence and in Interpretation: What Do Reduced States Refer to?Sebastian Fortin & Olimpia Lombardi - 2014 - Foundations of Physics 44 (4):426-446.
    The interpretation of the concept of reduced state is a subtle issue that has relevant consequences when the task is the interpretation of quantum mechanics itself. The aim of this paper is to argue that reduced states are not the quantum states of subsystems in the same sense as quantum states are states of the whole composite system. After clearly stating the problem, our argument is developed in three stages. First, we consider the phenomenon of environment-induced decoherence as an example (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The “Past Hypothesis”: Not even false.John Earman - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (3):399-430.
    It has become something of a dogma in the philosophy of science that modern cosmology has completed Boltzmann's program for explaining the statistical validity of the Second Law of thermodynamics by providing the low entropy initial state needed to ground the asymmetry in entropic behavior that underwrites our inference about the past. This dogma is challenged on several grounds. In particular, it is argued that it is likely that the Boltzmann entropy of the initial state of the universe is an (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Philosophy of statistical mechanics.Lawrence Sklar - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The ergodic hierarchy.Roman Frigg & Joseph Berkovitz - 2011 - Stanford Encyclopedia of Philosophy.
    The so-called ergodic hierarchy (EH) is a central part of ergodic theory. It is a hierarchy of properties that dynamical systems can possess. Its five levels are egrodicity, weak mixing, strong mixing, Kolomogorov, and Bernoulli. Although EH is a mathematical theory, its concepts have been widely used in the foundations of statistical physics, accounts of randomness, and discussions about the nature of chaos. We introduce EH and discuss how its applications in these fields.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On Nonequilibrium Statistical Mechanics.Joshua M. Luczak - unknown
    This thesis makes the issue of reconciling the existence of thermodynamically irreversible processes with underlying reversible dynamics clear, so as to help explain what philosophers mean when they say that an aim of nonequilibrium statistical mechanics is to underpin aspects of thermodynamics. Many of the leading attempts to reconcile the existence of thermodynamically irreversible processes with underlying reversible dynamics proceed by way of discussions that attempt to underpin the following qualitative facts: (i) that isolated macroscopic systems that begin away from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time in Thermodynamics.Jill North - 2011 - In Criag Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 312--350.
    Or better: time asymmetry in thermodynamics. Better still: time asymmetry in thermodynamic phenomena. “Time in thermodynamics” misleadingly suggests that thermodynamics will tell us about the fundamental nature of time. But we don’t think that thermodynamics is a fundamental theory. It is a theory of macroscopic behavior, often called a “phenomenological science.” And to the extent that physics can tell us about the fundamental features of the world, including such things as the nature of time, we generally think that only fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Neo-Nagelian reduction: a statement, defence, and application.Foad Dizadji-Bahmani - 2011 - Dissertation, London School of Economics
    The thesis proposes, defends, and applies a new model of inter-theoretic reduction, called "Neo-Nagelian" reduction. There are numerous accounts of inter-theoretic reduction in the philosophy of science literature but the most well-known and widely-discussed is the Nagelian one. In the thesis I identify various kinds of problems which the Nagelian model faces. Whilst some of these can be resolved, pressing ones remain. In lieu of the Nagelian model, other models of inter-theoretic reduction have been proposed, chief amongst which are so-called (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Justification in statistical mechanics.Kevin Davey - unknown
    According to a standard view of the second law of thermodynamics, our belief in the second law can be justified by pointing out that low entropy macrostates are less probable than high entropy macrostates, and then noting that a system in an improbable state will tend to evolve toward a more probable state. I would like to argue that this justification of the second law of thermodynamics is fundamentally flawed, and will show that some puzzles sometimes associated with the second (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Compendium of the foundations of classical statistical physics.Jos Uffink - 2005 - In Jeremy Butterfield & John Earman (eds.), Handbook of the Philosophy of Physics. Elsevier.
    Roughly speaking, classical statistical physics is the branch of theoretical physics that aims to account for the thermal behaviour of macroscopic bodies in terms of a classical mechanical model of their microscopic constituents, with the help of probabilistic assumptions. In the last century and a half, a fair number of approaches have been developed to meet this aim. This study of their foundations assesses their coherence and analyzes the motivations for their basic assumptions, and the interpretations of their central concepts. (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Chance and time.Amit Hagar - 2004 - Dissertation, Ubc
    One of the recurrent problems in the foundations of physics is to explain why we rarely observe certain phenomena that are allowed by our theories and laws. In thermodynamics, for example, the spontaneous approach towards equilibrium is ubiquitous yet the time-reversal-invariant laws that presumably govern thermal behaviour in the microscopic level equally allow spontaneous departure from equilibrium to occur. Why are the former processes frequently observed while the latter are almost never reported? Another example comes from quantum mechanics where the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Decoherence: The View from the History and the Philosophy of Science.Amit Hagar - 2012 - Phil. Trans. Royal Soc. London A 375 (1975).
    We present a brief history of decoherence, from its roots in the foundations of classical statistical mechanics, to the current spin bath models in condensed matter physics. We analyze the philosophical import of the subject matter in three different foundational problems, and find that, contrary to the received view, decoherence is less instrumental to their solutions than it is commonly believed. What makes decoherence more philosophically interesting, we argue, are the methodological issues it draws attention to, and the question of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A new approach to the approach to equilibrium.Roman Frigg & Charlotte Werndl - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. The Frontiers Collection. Springer. pp. 99-114.
    Consider a gas confined to the left half of a container. Then remove the wall separating the two parts. The gas will start spreading and soon be evenly distributed over the entire available space. The gas has approached equilibrium. Why does the gas behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the system has to be ergodic for the approach to equilibrium to take place. This answer has been criticised on different grounds (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Why typicality does not explain the approach to equilibrium.Roman Frigg - 2011 - In .
    Why do systems prepared in a non-equilibrium state approach, and eventually reach, equilibrium? An important contemporary version of the Boltzmannian approach to statistical mechanics answers this question by an appeal to the notion of typicality. The problem with this approach is that it comes in different versions, which are, however, not recognised as such, much less clearly distinguished, and we often find different arguments pursued side by side. The aim of this paper is to disentangle different versions of typicality-based explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • What is statistical mechanics?Roman Frigg - unknown
    Let us begin with a characteristic example. Consider a gas that is confined to the left half of a box. Now we remove the barrier separating the two halves of the box. As a result, the gas quickly disperses, and it continues to do so until it homogeneously fills the entire box. This is illustrated in Figure 1.
    Download  
     
    Export citation  
     
    Bookmark   6 citations