Switch to: References

Citations of:

The theory of the universal wave function

In B. DeWitt & N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics. Princeton UP. pp. 3 (1973)

Add citations

You must login to add citations.
  1. New Prospects for a Causally Local Formulation of Quantum Theory.Jacob A. Barandes - manuscript
    It is difficult to extract reliable criteria for causal locality from the limited ingredients found in textbook quantum theory. In the end, Bell humbly warned that his eponymous theorem was based on criteria that “should be viewed with the utmost suspicion.” Remarkably, by stepping outside the wave-function paradigm, one can reformulate quantum theory in terms of old-fashioned configuration spaces together with ‘unistochastic’ laws. These unistochastic laws take the form of directed conditional probabilities, which turn out to provide a hospitable foundation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How in the World are There Many Worlds?Logan Carter - manuscript
    This paper explores personal identity and persistence through time in the Many Worlds Interpretation (MWI) of quantum mechanics (QM). First, I will motivate the MWI’s relevance in the domain of metaphysics. Second, I will define endurantism. Third, I will explain the foundational physics underlying the MWI which entails branching worlds. Finally, I will argue that the privileged branch view best captures endurantist judgments about personal identity and persistence through time in the many-worlds framework. (Note that this work is in its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Open Systems View.Michael E. Cuffaro & Stephan Hartmann - 2023
    There is a deeply entrenched view in philosophy and physics, the closed systems view, according to which isolated systems are conceived of as fundamental. On this view, when a system is under the influence of its environment this is described in terms of a coupling between it and a separate system which taken together are isolated. We argue against this view, and in favor of the alternative open systems view, for which systems interacting with their environment are conceived of as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Everett Interpretation: Structure.Simon Saunders - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    The Everett interpretation of quantum mechanics divides naturally into two parts: first, the interpretation of the structure of the quantum state, in terms of branching, and second, the interpretation of this branching structure in terms of probability. This is the first of two reviews of the Everett interpretation, and focuses on structure, with particular attention to the role of decoherence theory. Written in terms of the quantum histories formalism, decoherence theory just is the theory of branching structure, in Everett's sense.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Typicality in Pure Wave Mechanics.Jeffrey A. Barrett - unknown
    Hugh Everett III's pure wave mechanics is a deterministic physical theory with no probabilities. He nevertheless sought to show how his theory might be understood as making the same statistical predictions as the standard collapse formulation of quantum mechanics. We will consider Everett's argument for pure wave mechanics, how it depends on the notion of branch typicality, and the relationship between the predictions of pure wave mechanics and the standard quantum probabilities.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Everett's “Many-Worlds” proposal.Brett Maynard Bevers - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (1):3-12.
    Hugh Everett III proposed that a quantum measurement can be treated as an interaction that correlates microscopic and macroscopic systems—particularly when the experimenter herself is included among those macroscopic systems. It has been difficult, however, to determine precisely what this proposal amounts to. Almost without exception, commentators have held that there are ambiguities in Everett’s theory of measurement that result from significant—even embarrassing—omissions. In the present paper, we resist the conclusion that Everett’s proposal is incomplete, and we develop a close (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Time, quantum mechanics, and probability.Simon Saunders - 1998 - Synthese 114 (3):373-404.
    A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert Space (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • God et al—World-Making as Collaborative Improvisation: New Metaphors for Open Theists.Mark Steen - 2022 - In K. J. Clark and J. Koperski (ed.), Abrahamic Reflections on Randomness and Providence. pp. 311-338.
    The Abrahamic traditions regard God as the world’s author. But what kind of author? A novelist? A playwright? Perhaps a composer of classical music? I will argue that it is best to regard God as like an improvisational play director or the leader of a jazz ensemble. Each determines the broad melodic contours or coarse-grained plot beforehand, while allowing their musicians or actors, and chance, to fill in the more fine-grained details. This analogy allows us to regard God as the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • (1 other version)Philosophy enters the optics laboratory: Bell's theorem and its first experimental tests (1965–1982).Olival Freire - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (4):577-616.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Everett Interpretation: Probability.Simon Saunders - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    The Everett interpretation of quantum mechanics divides naturally into two parts: first, the interpretation of the structure of the quantum state, in terms of branching, and second, the interpretation of this branching structure in terms of probability. This is the second of two reviews of the Everett interpretation, and focuses on probability. Branching processes are identified as chance processes, and the squares of branch amplitudes are chances. Since branching is emergent, physical probability is emergent as well.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum Worlds.Jeffrey A. Barrett - 2016 - Principia: An International Journal of Epistemology 20 (1):45-60.
    Because of the conceptual difficulties it faces, quantum mechanics provides a salient example of how alternative metaphysical commitments may clarify our understanding of a physical theory and the explanations it provides. Here we will consider how postulating alternative quantum worlds in the context of Hugh Everett III’s pure wave mechanics may serve to explain determinate measurement records and the standard quantum statistics. We will focus on the properties of such worlds, then briefly consider other metaphysical options available for interpreting pure (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Multiplicity in Everett׳s interpretation of quantum mechanics.Louis Marchildon - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):274-284.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Philosophy enters the optics laboratory: Bell's theorem and its first experimental tests.Olival Freire - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (4):577-616.
    Download  
     
    Export citation  
     
    Bookmark   2 citations