Switch to: References

Add citations

You must login to add citations.
  1. Proofs, Reliable Processes, and Justification in Mathematics.Yacin Hamami - 2021 - British Journal for the Philosophy of Science 74 (4):1027-1045.
    Although there exist today a variety of non-deductive reliable processes able to determine the truth of certain mathematical propositions, proof remains the only form of justification accepted in mathematical practice. Some philosophers and mathematicians have contested this commonly accepted epistemic superiority of proof on the ground that mathematicians are fallible: when the deductive method is carried out by a fallible agent, then it comes with its own level of reliability, and so might happen to be equally or even less reliable (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Randomized arguments are transferable.Jeffrey C. Jackson - 2009 - Philosophia Mathematica 17 (3):363-368.
    Easwaran has given a definition of transferability and argued that, under this definition, randomized arguments are not transferable. I show that certain aspects of his definition are not suitable for addressing the underlying question of whether or not there is an epistemic distinction between randomized and deductive arguments. Furthermore, I demonstrate that for any suitable definition, randomized arguments are in fact transferable.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Probabilistic proofs and transferability.Kenny Easwaran - 2009 - Philosophia Mathematica 17 (3):341-362.
    In a series of papers, Don Fallis points out that although mathematicians are generally unwilling to accept merely probabilistic proofs, they do accept proofs that are incomplete, long and complicated, or partly carried out by computers. He argues that there are no epistemic grounds on which probabilistic proofs can be rejected while these other proofs are accepted. I defend the practice by presenting a property I call ‘transferability’, which probabilistic proofs lack and acceptable proofs have. I also consider what this (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Probabilistic Proofs, Lottery Propositions, and Mathematical Knowledge.Yacin Hamami - 2021 - Philosophical Quarterly 72 (1):77-89.
    In mathematics, any form of probabilistic proof obtained through the application of a probabilistic method is not considered as a legitimate way of gaining mathematical knowledge. In a series of papers, Don Fallis has defended the thesis that there are no epistemic reasons justifying mathematicians’ rejection of probabilistic proofs. This paper identifies such an epistemic reason. More specifically, it is argued here that if one adopts a conception of mathematical knowledge in which an epistemic subject can know a mathematical proposition (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Assessing the Overall Validity of Randomised Controlled Trials.Alexander Krauss - 2021 - International Studies in the Philosophy of Science 34 (3):159-182.
    In the biomedical, behavioural and social sciences, the leading method used to estimate causal effects is commonly randomised controlled trials (RCTs) that are generally viewed as both the source and justification of the most valid evidence. In studying the foundation and theory behind RCTs, the existing literature analyses important single issues and biases in isolation that influence causal outcomes in trials (such as randomisation, statistical probabilities and placebos). The common account of biased causal inference is described in a general way (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-deductive logic in mathematics.James Franklin - 1987 - British Journal for the Philosophy of Science 38 (1):1-18.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as Fermat's Last Theorem and the Riemann Hypothesis, have had to be considered in terms of the evidence for and against them. It is argued here that it is not adequate to describe the relation of evidence to hypothesis as `subjective', `heuristic' or (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Empiricism in arithmetic and analysis.E. B. Davies - 2003 - Philosophia Mathematica 11 (1):53-66.
    We discuss the philosophical status of the statement that (9n – 1) is divisible by 8 for various sizes of the number n. We argue that even this simple problem reveals deep tensions between truth and verification. Using Gillies's empiricist classification of theories into levels, we propose that statements in arithmetic should be classified into three different levels depending on the sizes of the numbers involved. We conclude by discussing the relationship between the real number system and the physical continuum.
    Download  
     
    Export citation  
     
    Bookmark   2 citations